Log in

Anterior cruciate ligament tear detection based on convolutional neural network and generative adversarial neural network

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Knee ligament tear injury is frequent in many volleyball, football, basketball, and cricket players. In the past, various deep learning-based ACL tear detection schemes using knee magnetic resonance imaging (MRI) have been presented. It has shown challenges in ACL tear detection performance due to class imbalance issue arising due to uneven training samples and poor feature representation. This paper presents a simple and effective ACL knee ligament tear detection method with a convolutional neural network (ATD-CNN) to lessen the intricacy of the network. Further, the self-attention mechanism is used to improve the feature representation of MRI image information, neglect the irrelevant information in deep features, and enhance the classification accuracy. To diminish the class imbalance issue, generative adversarial network (GAN) is used to construct the synthetic database. The performance of the ATD-CNN with self-attention is assessed on the MRNet database using precision, accuracy, F1-score, and recall. ATD-CNN provides an accuracy of 90.10% for the original and 93.93% and augmented datasets. However, the ATD-CNN without attention mechanism resulted in 89.60% and 92.30% accuracy for original and augmented dataset. The proposed ATD-CNN model indicates that it can be utilized to detect ACL tears automatically and outperforms the existing schemes for tear detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The dataset used for the work can be found at https://stanfordmlgroup.github.io/competitions/mrnet/ accessed on 1 January 2021.

References

  1. Bordalo-Rodrigues M, White LM (2021) Knee. Musculoskeletal Diseases 2021–2024:83–106

    Google Scholar 

  2. Kunze KN, Rossi DM, White GM, Karhade AV, Deng J, Williams BT, Chahla J (2021) Diagnostic performance of artificial intelligence for detection of anterior cruciate ligament and meniscus tears: a systematic review. Arthrosc J Arthrosc Relat Surg 37(2):771–781

    Article  Google Scholar 

  3. Mahdi AA, Al-Tamimi MS (2022) Knee meniscus segmentation and tear detection based on magnitic resonacis images: a review of literature. Int J Nonlinear Anal Appl 13(2):691–708

    Google Scholar 

  4. Awan MJ, Rahim MSM, Salim N, Rehman A, Garcia-Zapirain B (2022) Automated knee MR images segmentation of anterior cruciate ligament tears. Sensors 22(4):1552

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  5. Javed Awan M, Mohd Rahim MS, Salim N, Mohammed MA, Garcia-Zapirain B, Abdulkareem KH (2021) Efficient detection of knee anterior cruciate ligament from magnetic resonance imaging using deep learning approach. Diagnostics 11(1):105

    Article  PubMed Central  Google Scholar 

  6. Astuto B, Flament I, Namiri NK, Shah R, Bharadwaj U, Link TM, Bucknor MD, Pedoia V, Majumdar S (2021) Automatic deep learning–assisted detection and grading of abnormalities in knee MRI studies. Radiol Artif Intell 3(3):e200165

    Article  PubMed  PubMed Central  Google Scholar 

  7. Joshi K, Suganthi K (2022) Anterior cruciate ligament tear detection based on deep convolutional neural network. Diagnostics 12(10):2314

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gupta S, Pawar PM, Tamizharasan PS (2022) Intelligent detection of knee injury in MRI exam. Int J Inf Technol 14(4):1815–1821

    Google Scholar 

  9. Kapoor V, Tyagi N, Manocha B, Arora A, Roy S, Nagrath P (2021) Detection of anterior cruciate ligament tear using deep learning and machine learning techniques. In: Data analytics and management, Springer, Singapore, pp 9–22

  10. Li Z, Ren S, Zhou R, Jiang X, You T, Li C, Zhang W (2021) Deep learning-based magnetic resonance imaging image features for diagnosis of anterior cruciate ligament injury. J Healthc Eng

  11. Key S, Baygin M, Demir S, Dogan S, Tuncer T (2022) Meniscal tear and ACL injury detection model based on AlexNet and iterative ReliefF. J Digit Imaging 35(2):200–212

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mazlan S, Ayob M, Bakti Z (2017) Anterior cruciate ligament (ACL) injury classification system using support vector machine (SVM). In: Proceedings of the 2017 international conference on engineering technology and technopreneurship (ICE2T), Kuala Lumpur, Malaysia, pp 1–5

  13. Ashinsky BG, Coletta CE, Bouhrara M, Lukas VA, Boyle JM, Reiter DA, Neu CP, Goldberg IG, Spencer RG (2015) Machine learning classification of OARSI-scored human articular cartilage using magnetic resonance imaging. Osteoarthr Cartil 23:1704–1712

    Article  CAS  Google Scholar 

  14. Štajduhar I, Mamula M, Miletic D, Ünal G (2017) Semi-automated detection of anterior cruciate ligament injury from MRI. Comput Methods Progr Biomed 140:151–164

    Article  Google Scholar 

  15. Lao Y, Jia B, Yan P, Pan M, Hui X, Li J, Luo W, Li X, Han J, Yan P et al (2019) Diagnostic accuracy of machine-learning-assisted detection for anterior cruciate ligament injury based on magnetic resonance imaging: protocol for a systematic review and meta-analysis. Medicine 9:18324

    Article  Google Scholar 

  16. Zeng W, Ismail SA, Pappas E (2020) Detecting the presence of anterior cruciate ligament injury based on gait dynamics disparity and neural networks. Artif Intell Rev 53:3153–3176

    Article  Google Scholar 

  17. Manna S, Bhattacharya S, Pal U (2020) Self-supervised representation learning for detection of ACL tear injury in knee MRI. ar**v ar**v:2007.07761.

  18. Chang PD, Wong TT, Rasiej MJ (2019) deep learning for detection of complete anterior cruciate ligament tear. J Digit Imaging 32:980–986

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liu F, Guan B, Zhou Z, Samsonov A, Rosas H, Lian K, Sharma R, Kanarek A, Kim J, Guermazi A et al (2019) Fully automated diagnosis of anterior cruciate ligament tears on knee MR images by using deep learning. Radiol Artif Intell 1:180091

    Article  PubMed  PubMed Central  Google Scholar 

  20. Namiri NK, Flament I, Astuto B, Shah R, Tibrewala R, Caliva F, Link TM, Pedoia V, Majumdar S (2020) Deep learning for hierarchical severity staging of anterior cruciate ligament injuries from MRI. Radiol Arti. Intell 2:190207

    Article  Google Scholar 

  21. Zhang L, Li M, Zhou Y, Lu G, Zhou Q (2020) Deep learning approach for anterior cruciate ligament lesion detection: evaluation of diagnostic performance using arthroscopy as the reference standard. J Magn Reson Imaging 52:1745–1752

    Article  PubMed  Google Scholar 

  22. Irmakci I, Anwar SM, Torigian DA, Bagci U (2019) Deep learning for musculoskeletal image analysis. In: 2019 53rd Asilomar conference on signals, systems, and computers, IEEE, pp 1481–1485

  23. Bien N, Rajpurkar P, Ball RL, Irvin J, Park A, Jones E, Bereket M, Patel BN, Yeom KW, Shpanskaya K et al (2018) Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet. PLoS Med 15(11):e1002699

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kara AC, Hardalaç, (2021) Detection and classification of knee injuries from MR images using the MRNet dataset with progressively operating deep learning methods. Mach Learn Knowl Extract 3(4):1009–1029

    Article  Google Scholar 

  25. Azcona D, McGuinness K, Smeaton AF (2020) A comparative study of existing and new deep learning methods for detecting knee injuries using the MRNet dataset. In: 2020 international conference on intelligent data science technologies and applications (IDSTA), IEEE, pp 149–155

  26. Tsai CH, Kiryati N, Konen E, Eshed I, Mayer A (2020) Knee injury detection using MRI with an efficiently-layered network (ELNet). In: Medical imaging with deep learning, PMLR, pp 784–794

  27. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2020) Generative adversarial networks. Commun ACM 63(11):139–144

    Article  MathSciNet  Google Scholar 

  28. Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. J Big Data 6:60. https://doi.org/10.1186/s40537-019-0197-0

    Article  Google Scholar 

  29. Sandfort V, Yan Ke, Pickhardt PJ, Summers RM (2019) Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks. Sci Rep 9(1):1–9

    Article  ADS  CAS  Google Scholar 

  30. Qian Y, Hu Hu, Tan T (2019) Data augmentation using generative adversarial networks for robust speech recognition. Speech Commun 114:1–9

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Suganthi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, K., Suganthi, K. Anterior cruciate ligament tear detection based on convolutional neural network and generative adversarial neural network. Neural Comput & Applic 36, 5021–5030 (2024). https://doi.org/10.1007/s00521-023-09350-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-09350-x

Keywords

Navigation