Log in

Exact boundary controllability of 1D semilinear wave equations through a constructive approach

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

The exact controllability of the semilinear wave equation \(y_{tt}-y_{xx}+ f(y)=0\), \(x\in (0,1)\) assuming that f is locally Lipschitz continuous and satisfies the growth condition \(\limsup _{\vert r\vert \rightarrow \infty } \vert f(r)\vert /(\vert r\vert \ln ^{p}\vert r\vert )\leqslant \beta \) for some \(\beta \) small enough and \(p=2\) has been obtained by Zuazua (Ann Inst H Poincaré Anal Non Linéaire 10(1):109–129, 1993). The proof based on a non-constructive fixed point arguments makes use of precise estimates of the observability constant for a linearized wave equation. Under the above asymptotic assumption with \(p=3/2\), by introducing a different fixed point application, we present a simpler proof of the exact boundary controllability which is not based on the cost of observability of the wave equation with respect to potentials. Then, assuming that f is locally Lipschitz continuous and satisfies the growth condition \(\limsup _{\vert r\vert \rightarrow \infty } \vert f^\prime (r)\vert /\ln ^{3/2}\vert r\vert \leqslant \beta \) for some \(\beta \) small enough, we show that the above fixed point application is contracting yielding a constructive method to approximate the controls for the semilinear equation. Numerical experiments illustrate the results. The results can be extended to the multi-dimensional case and for nonlinearities involving the gradient of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baudouin L, De Buhan M, Ervedoza S (2013) Global Carleman estimates for waves and applications. Commun Partial Differ Equ 38(5):823–859

    Article  MathSciNet  MATH  Google Scholar 

  2. Burman E, Feizmohammadi A, Münch A, Oksanen L (2021) Space time finite element methods for control problems subject to the wave equation. Preprint hal-03346617

  3. Bernadou M, Hassan K (1981) Basis functions for general Hsieh–Clough–Tocher triangles, complete or reduced. Intern J Numer Methods Eng 17(5):784–789

    Article  MathSciNet  MATH  Google Scholar 

  4. Bottois A, Lemoine J, Münch A (2021) Constructive exact control of semilinear multi-dimensional wave equations by a least-squares approach. Preprint hal-03112309

  5. Bardos C, Lebeau G, Rauch J (1992) Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J Control Optim 30(5):1024–1065

    Article  MathSciNet  MATH  Google Scholar 

  6. Bellassoued M, Yamamoto M (2017) Carleman estimates and applications to inverse problems for hyperbolic systems. Springer Monographs in Mathematics. Springer, Tokyo

    MATH  Google Scholar 

  7. Calvalcanti M, Cavalcanti V, Carole R, Rosier L (2021) Numerical control of a semilinear wave equation on an interval. Preprint, hal-03369560

  8. Cîndea N, Fernández-Cara E, Münch A (2013) Numerical controllability of the wave equation through primal methods and Carleman estimates. ESAIM Control Optim Calc Var 19(4):1076–1108

    Article  MathSciNet  MATH  Google Scholar 

  9. Cazenave T, Haraux A (1980) Équations d’évolution avec non linéarité logarithmique. Ann Fac Sci Toulouse Math (5) 2(1):21–51

    Article  MathSciNet  MATH  Google Scholar 

  10. Chewning WC (1976) Controllability of the nonlinear wave equation in several space variables. SIAM J Control Optim 14(1):19–25

    Article  MathSciNet  MATH  Google Scholar 

  11. Ciarlet PG (2002) The finite element method for elliptic problems, volume 40 of classics in applied mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA. Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)]

  12. Cannarsa P, Komornik V, Loreti P (2002) One-sided and internal controllability of semilinear wave equations with infinitely iterated logarithms. Discrete Contin Dyn Syst 8(3):745–756

    Article  MathSciNet  MATH  Google Scholar 

  13. Cîndea N, Münch A (2015) A mixed formulation for the direct approximation of the control of minimal \(L^2\)-norm for linear type wave equations. Calcolo 52(3):245–288

    Article  MathSciNet  MATH  Google Scholar 

  14. Coron J-M, Trélat E (2006) Global steady-state stabilization and controllability of 1D semilinear wave equations. Commun Contemp Math 8(4):535–567

    Article  MathSciNet  MATH  Google Scholar 

  15. Dehman B, Lebeau G (2009) Analysis of the HUM control operator and exact controllability for semilinear waves in uniform time. SIAM J Control Optim 48(2):521–550

    Article  MathSciNet  MATH  Google Scholar 

  16. Dehman B, Lebeau G, Zuazua E (2003) Stabilization and control for the subcritical semilinear wave equation. Ann Sci École Norm Sup (4) 36(4):525–551

    Article  MathSciNet  MATH  Google Scholar 

  17. Ervedoza S, Lemoine J, Münch A (2022) Exact controllability of semilinear heat equations through a constructive approach. Evol Equ Control Theory. https://doi.org/10.3934/eect.2022042

  18. Ervedoza S, Zuazua E (2010) A systematic method for building smooth controls for smooth data. Discrete Contin Dyn Syst Ser B 14(4):1375–1401

    MathSciNet  MATH  Google Scholar 

  19. Fattorini HO (1975) Local controllability of a nonlinear wave equation. Math Syst Theory 9(1):30–45

    Article  MathSciNet  MATH  Google Scholar 

  20. Hecht F (2012) New development in Freefem++. J Numer Math 20(3–4):251–265

    MathSciNet  MATH  Google Scholar 

  21. Joly R, Laurent C (2014) A note on the semiglobal controllability of the semilinear wave equation. SIAM J Control Optim 52(1):439–450

    Article  MathSciNet  MATH  Google Scholar 

  22. Klibanov MV, Kolesov AE, Nguyen L, Sullivan A (2017) Globally strictly convex cost functional for a 1-D inverse medium scattering problem with experimental data. SIAM J Appl Math 77(5):1733–1755

    Article  MathSciNet  MATH  Google Scholar 

  23. Lions J-L (1988) Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1, volume 8 of Recherches en Mathématiques Appliquées [Research in Applied Mathematics]. Masson, Paris. Contrôlabilité exacte. [Exact controllability], With appendices by E. Zuazua, C. Bardos, G. Lebeau and J. Rauch

  24. Lions J-L (1988) Exact controllability, stabilization and perturbations for distributed systems. SIAM Rev 30(1):1–68

    Article  MathSciNet  MATH  Google Scholar 

  25. Lagnese J, Lions J-L (1988) Modelling analysis and control of thin plates, vol 6. Recherches en Mathématiques Appliquées [Research in Applied Mathematics]. Masson, Paris

  26. Lasiecka I, Lions J-L, Triggiani R (1986) Nonhomogeneous boundary value problems for second order hyperbolic operators. J Math Pures Appl (9) 65(2):149–192

    MathSciNet  MATH  Google Scholar 

  27. Lemoine J, Münch A (2022) Constructive exact control of semilinear 1d heat equations. Math Control Relat Fields. https://doi.org/10.3934/mcrf.2022001

  28. Lasiecka I, Triggiani R (1991) Exact controllability of semilinear abstract systems with application to waves and plates boundary control problems. Appl Math Optim 23(2):109–154

    Article  MathSciNet  MATH  Google Scholar 

  29. Li L, Zhang X (2000) Exact controllability for semilinear wave equations. J Math Anal Appl 250(2):589–597

    Article  MathSciNet  MATH  Google Scholar 

  30. Markus L (1965) Controllability of nonlinear processes. J SIAM Control Ser A 3:78–90

    MathSciNet  MATH  Google Scholar 

  31. Münch A, Souza DA (2016) A mixed formulation for the direct approximation of \(L^2\)-weighted controls for the linear heat equation. Adv Comput Math 42(1):85–125

    Article  MathSciNet  MATH  Google Scholar 

  32. Münch A, Trélat E (2022) Constructive exact control of semilinear 1D wave equations by a least-squares approach. SIAM J Control Optim 60(2):652–673

    Article  MathSciNet  MATH  Google Scholar 

  33. Natarajan V, Zhou H-C, Weiss G, Fridman E (2019) Exact controllability of a class of nonlinear distributed parameter systems using back-and-forth iterations. Intern J Control 92(1):145–162

    Article  MathSciNet  MATH  Google Scholar 

  34. Russell DL (1978) Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Rev 20(4):639–739

    Article  MathSciNet  MATH  Google Scholar 

  35. Simon J (1987) Compact sets in the space \(L^p(0, T;B)\). Ann Mat Pura Appl 4(146):65–96

    MATH  Google Scholar 

  36. Zhang X (2000) Explicit observability estimate for the wave equation with potential and its application. R Soc Lond Proc Ser A Math Phys Eng Sci 456(1997):1101–1115

    Article  MathSciNet  MATH  Google Scholar 

  37. Zuazua E (1988) Contrôlabilité exacte de systèmes d’évolution non linéaires. C R Acad Sci Paris Sér I Math 306(3):129–132

  38. Zuazua E (1988) Exact controllability for semilinear distributed systems. In: Proceedings of the 27th IEEE conference on decision and control, pp 1265–1268 vol 2

  39. Zuazua E (1990) Exact controllability for the semilinear wave equation. J Math Pures Appl 69(1):1–31

    MathSciNet  MATH  Google Scholar 

  40. Zuazua E (1991) Exact boundary controllability for the semilinear wave equation. In: Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. X (Paris, 1987–1988), volume 220 of Pitman Res. Notes Math. Ser. Longman Sci. Tech., Harlow, pp 357–391

  41. Zuazua E (1993) Exact controllability for semilinear wave equations in one space dimension. Ann Inst H Poincaré Anal Non Linéaire 10(1):109–129

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the funding by the French government research program “Investissements d’Avenir” through the IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-25).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Münch.

Additional information

Dedicated to the memory of Roland Glowinski

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of Theorem 7

Appendix: Proof of Theorem 7

In what follows, in order to simplify the notations, we shall just write \(\rho =\rho (t)\) and \(\rho _1=\rho _1(t)\) instead of \(\rho =\rho (s;x,t)\) and \(\rho _1=\rho _1(s;t)\).

Preliminary to the proof and following [18], for all \(f\in \mathcal {C}^0(\mathbb R;E)\) (where E is a Banach space) and any \(\tau >0\), we define \(\delta _\tau f:= f\left( t+\frac{\tau }{2} \right) - f\left( t-\frac{\tau }{2} \right) \) and

$$\begin{aligned} \mathcal {T}_\tau f := \frac{1}{\tau }\delta _\tau \left( \frac{\delta _\tau f}{\tau }\right) = \frac{f(t+\tau )-2f(t)+f(t-\tau )}{\tau ^2}. \end{aligned}$$

Let now \(w_s\in P_s\) and the solution \(y_s \in L^2(Q_T)\) be given by 6. Then, z defined by \(z=\mathcal {T}_\tau w_s\) belongs to \(P_s\), where \(w_s\) as well as \(y_s\) can be extended uniquely on \((-\infty ,0)\) and \((T,+\infty )\). Indeed, in the interval \((-\infty , 0)\) the solution \(y_s\) satisfies the following set of equations

(53)

where the source term \(B\in L^2(Q_T)\) is assumed to be extendable by 0 outside (0, T). Recall that the boundary condition \(y_s(1,t) =0\) holds outside (0, T) since \(\eta =0\) (appearing in the formula of \(v_s\)) vanishes outside \((\delta , T-\delta )\).

Similarly, in \((T, + \infty )\) we can define the solution \(y_s\) uniquely, and \(y_s(t)=0\) for all \(t\geqslant T\). It follows that the solution \(y_s\) satisfies \(y_s\in \mathcal {C}^0(\mathbb R;L^2(\Omega ))\cap \mathcal {C}^1(\mathbb R;H^{-1}(\Omega ))\) and \(y_s\in \mathcal {C}^0((-\infty ,\delta ];H^1(\Omega ))\cap \mathcal {C}^1((-\infty ,\delta ];L^2(\Omega ))\) and \(y_s\in \mathcal {C}^0([T-\delta , +\infty );H^1(\Omega ))\cap \mathcal {C}^1([T-\delta ,+ \infty );L^2(\Omega ))\) (see [26]). We extend as well the weights \(\rho \) and \(\rho _1\) in \(\Omega \times \mathbb {R}\) so that it preserves smoothness and positivity properties.

This ensures the extension of the solution \(w_s\) which satisfies the following set of equations in \(\mathbb R\)

(54)

Moreover, it can be seen that \(Lw_s=0\) in \([T, + \infty )\), since \(y_s\) is a controlled solution to (53).

We now proceed to the proof of Theorem 7, done in three steps.

Step 1 : We suppose first that \(u_0\in H^1_0(\Omega )\cap H^2(\Omega )\), \(u_1\in H_0^1(\Omega )\) and \(B\in \mathcal {D}(0,T;L^2(\Omega ))\) and prove that \(v_s\in H^1(0,T)\) and \((y_s)_t\in L^2(Q_T)\).

We start by considering the variational formulation (12) by choosing \(z=\mathcal {T}_\tau w_s\) as test function. Since \(w_s \in \mathcal {C}^0(\mathbb R;H^1_0(\Omega ))\cap \mathcal {C}^1(\mathbb R;L^2(\Omega ))\) solves (54), it is clear that \(\mathcal {T}_\tau w_s \in \mathcal {C}^0([0,T]; H^1_0(\Omega )) \cap \mathcal {C}^1([0,T]; L^2(\Omega ))\), \((\mathcal {T}_\tau w_s)_x\in L^2(0,T)\). With this z, the formulation reads

$$\begin{aligned} \int _{Q_T}\rho ^{-2} L w_s L \mathcal {T}_\tau w_s \,\text {d}x\text {d}t+ s \int _0^T \eta ^2(t) \rho ^{-2}_1 (w_s)_x(1,t) \mathcal {T}_\tau (w_s)_x(1,t) \text {d}t\nonumber \\ = \int _\Omega u_1(x) \mathcal {T}_\tau w_s(x,0) \,\text {d}x- \int _\Omega u_0(x) \mathcal {T}_\tau (w_s)_t(x,0) \,\text {d}x+ \int _{Q_T}B \mathcal {T}_\tau w_s \,\text {d}x\text {d}t. \end{aligned}$$
(55)

Sub-step 1. Let us start with the first integral in the left hand side of (55). We have

$$\begin{aligned} \begin{aligned}&\int _{Q_T}\rho ^{-2}(t)Lw_s(t) L \mathcal {T}_\tau w_s(t) \,\text {d}x\text {d}t\\&=\frac{1}{\tau }\int _{Q_T} \rho ^{-2}(t) Lw_s(t)\frac{L w_s(t+\tau )-Lw_s(t)}{\tau }\,\text {d}x\text {d}t\\&-\frac{1}{\tau }\int _{Q_T} \rho ^{-2}(t) Lw_s(t)\frac{L w_s(t)-Lw_s(t-\tau )}{\tau }\,\text {d}x\text {d}t\\&=\frac{1}{\tau }\int _{Q_T} \rho ^{-2}(t) Lw_s(t)\frac{L w_s(t+\tau )-Lw_s(t)}{\tau }\,\text {d}x\text {d}t\\&-\frac{1}{\tau }\int _{-\tau }^{T-\tau }\!\!\!\int _\Omega \rho ^{-2}(t+\tau )Lw_s(t+\tau )\frac{L w_s(t+\tau )-Lw_s(t)}{\tau }\,\text {d}x\text {d}t\\&= \int _{Q_T} \left( \frac{\rho ^{-2}(t) Lw_s(t)-\rho ^{-2}(t+\tau )Lw_s(t+\tau )}{\tau }\right) \left( \frac{L w_s(t+\tau )-Lw_s(t)}{\tau }\right) \,\text {d}x\text {d}t\\&-\frac{1}{\tau }\int _{-\tau }^{0}\int _\Omega \rho ^{-2}(t+\tau )Lw_s(t+\tau )\left( \frac{L w_s(t+\tau )-Lw_s(t)}{\tau }\right) \,\text {d}x\text {d}t\\&{-\frac{1}{\tau }\int _T^{T-\tau }\!\!\!\int _\Omega \rho ^{-2}(t+\tau )Lw_s(t+\tau )\left( \frac{L w_s(t+\tau )-Lw_s(t)}{\tau }\right) \,\text {d}x\text {d}t.} \end{aligned} \end{aligned}$$
(56)

Now, observe that

$$\begin{aligned} \begin{aligned}&\int _{Q_T} \left( \frac{\rho ^{-2}(t) Lw_s(t)-\rho ^{-2}(t+\tau )Lw_s(t+\tau )}{\tau }\right) \left( \frac{L w_s(t+\tau )-Lw_s(t)}{\tau }\right) \,\text {d}x\text {d}t\\&= \int _{Q_T} \rho ^2(t)\left( \frac{\rho ^{-2}(t) Lw_s(t)-\rho ^{-2}(t+\tau )Lw_s(t+\tau )}{\tau }\right) \rho ^{-2}(t)\\&\times \left( \frac{L w_s(t+\tau )-Lw_s(t)}{\tau }\right) \,\text {d}x\text {d}t\\&= - \int _{Q_T} \rho ^2(t)\left| \frac{\rho ^{-2}(t) Lw_s(t)-\rho ^{-2}(t+\tau )Lw_s(t+\tau )}{\tau }\right| ^2 \,\text {d}x\text {d}t\\& + \int _{Q_T} \rho ^2(t) \left( \frac{\rho ^{-2}(t) Lw_s(t)-\rho ^{-2}(t+\tau )Lw_s(t+\tau )}{\tau }\right) \\&\times \left( \frac{\rho ^{-2}(t) -\rho ^{-2}(t+\tau )}{\tau }\right) Lw_s(t+\tau ) \,\text {d}x\text {d}t. \end{aligned} \end{aligned}$$
(57)

The equality (56) then reads

$$\begin{aligned}&\int _{Q_T}\rho ^{-2} Lw_s(t) L \mathcal {T}_\tau w_s(t) \,\text {d}x\text {d}t\nonumber \\ =&- \int _{Q_T} \rho ^2(t)\left| \frac{\rho ^{-2}(t) Lw_s(t)-\rho ^{-2}(t+\tau )Lw_s(t+\tau )}{\tau }\right| ^2 \,\text {d}x\text {d}t\nonumber \\&+ \int _{Q_T} \rho ^2(t) \left( \frac{\rho ^{-2}(t) Lw_s(t)-\rho ^{-2}(t+\tau )Lw_s(t+\tau )}{\tau }\right) \nonumber \\&\times \left( \frac{\rho ^{-2}(t) -\rho ^{-2}(t+\tau )}{\tau }\right) Lw_s(t+\tau ) \,\text {d}x\text {d}t\nonumber \\&~~~~~~~~~~~~~~ -\frac{1}{\tau }\int _{-\tau }^{0}\int _\Omega \rho ^{-2}(t+\tau )Lw_s(t+\tau )\left( \frac{L w_s(t+\tau )-Lw_s(t)}{\tau }\right) \,\text {d}x\text {d}t\nonumber \\&{-\frac{1}{\tau }\int _T^{T-\tau }\!\!\!\int _\Omega \rho ^{-2}(t+\tau )Lw_s(t+\tau )\left( \frac{L w_s(t+\tau )-Lw_s(t)}{\tau }\right) \,\text {d}x\text {d}t.} \end{aligned}$$
(58)

Next, we shall look into the second term in the left hand side of (55). First, recall the smooth function \(\eta \) given by (9) satisfies \(\eta =0\) in \((-\infty , \delta ]\cup [T-\delta , +\infty )\) (with \(\delta >0\) given in (9)). Then, in a similar way that have lead to (56), we have assuming \(|\tau |\leqslant \delta \) :

$$\begin{aligned}&\int _0^T \eta ^2(t)\rho _1^{-2}(t)(w_s)_x(1,t) \mathcal {T}_\tau (w_s)_x(1,t) \text {d}t\nonumber \\&\quad = \int _0^T \left( \frac{\eta ^2(t)\rho _1^{-2}(t)(w_s)_x(1,t)-\eta ^2(t+\tau )\rho _1^{-2}(t+\tau ) (w_s)_x(1,t+\tau )}{\tau }\right) \nonumber \\&\qquad \times \left( \frac{(w_s)_x(1,t+\tau )-(w_s)_x(1,t)}{\tau }\right) \text {d}t. \end{aligned}$$
(59)

Then, using the identity

$$\begin{aligned} ad- bc = \frac{(a-c)(b+d)-(a+c)(b-d)}{2}, \qquad \forall (a,b,c,d) \in \mathbb R^4 \end{aligned}$$
(60)

with \(a = \eta ^2(t) \rho ^{-2}_1(t)\), \(b = (w_s)_x(1,t+\tau )\), \(c=\eta ^2(t+\tau ) \rho ^{-2}_1(t+\tau )\) and \(d = (w_s)_x(1,t)\), we obtain from (59)

$$\begin{aligned}&\int _0^T \eta ^2(t) \rho _1^{-2}(t)(w_s)_x(1,t) \mathcal {T}_\tau (w_s)_x(1,t) \text {d}t\nonumber \\ =&\int _0^T \frac{\left( \eta ^2(t)\rho _1^{-2}(t) - \eta ^2(t+\tau )\rho _1^{-2}(t+\tau )\right) \left( (w_s)_x(1,t)+(w_s)_x(1,t+\tau ) \right) }{2\tau } \nonumber \\&\times \left( \frac{(w_s)_x(1,t+\tau )-(w_s)_x(1,t)}{\tau }\right) \text {d}t\nonumber \\&\qquad \quad -\int _0^T \frac{\left( \eta ^2(t)\rho _1^{-2}(t)+\eta ^2(t+\tau )\rho _1^{-2}(t+\tau ) \right) }{2}\left| \frac{(w_s)_x(1,t+\tau )-(w_s)_x(1,t)}{\tau }\right| ^2 \text {d}t. \end{aligned}$$
(61)

Now, using (58) and (61) in the formulation (55), we have

$$\begin{aligned}&\int _{Q_T} \rho ^2(t)\left| \frac{\rho ^{-2}(t) Lw_s(t)-\rho ^{-2}(t+\tau )Lw_s(t+\tau )}{\tau }\right| ^2 \,\text {d}x\text {d}t\nonumber \\&+s\int _0^T \frac{\left( \eta ^2(t)\rho _1^{-2}(t)+\eta ^2(t+\tau )\rho _1^{-2}(t+\tau ) \right) }{2}\left| \frac{(w_s)_x(1,t+\tau )-(w_s)_x(1,t)}{\tau }\right| ^2 \text {d}t\nonumber \\ =&\int _{Q_T} \rho ^2(t) \left( \frac{\rho ^{-2}(t) Lw_s(t)-\rho ^{-2}(t+\tau )Lw_s(t+\tau )}{\tau }\right) \nonumber \\&\qquad \times \left( \frac{\rho ^{-2}(t) -\rho ^{-2}(t+\tau )}{\tau }\right) Lw_s(t+\tau ) \,\text {d}x\text {d}t\nonumber \\&~~~~~~~~~~~~~~ -\frac{1}{\tau }\int _{-\tau }^{0}\int _\Omega \rho ^{-2}(t+\tau )Lw_s(t+\tau )\left( \frac{L w_s(t+\tau )-Lw_s(t)}{\tau }\right) \,\text {d}x\text {d}t\nonumber \\&{-\frac{1}{\tau }\int _T^{T-\tau }\!\!\!\int _\Omega \rho ^{-2}(t+\tau )Lw_s(t+\tau )\left( \frac{L w_s(t+\tau )-Lw_s(t)}{\tau }\right) \,\text {d}x\text {d}t}\nonumber \\&+s \int _0^T \frac{\left( \eta ^2(t)\rho _1^{-2}(t) - \eta ^2(t+\tau )\rho _1^{-2}(t+\tau )\right) \left( (w_s)_x(1,t)+(w_s)_x(1,t+\tau ) \right) }{2\tau } \nonumber \\&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \times \left( \frac{(w_s)_x(1,t+\tau )-(w_s)_x(1,t)}{\tau }\right) \text {d}t\nonumber \\&- \int _{Q_T}B \mathcal {T}_\tau w_s \,\text {d}x\text {d}t-\int _\Omega u_1 \mathcal {T}_\tau w_s(\cdot ,0) \,\text {d}x+ \int _\Omega u_0 \mathcal {T}_\tau (w_s)_t(\cdot ,0) \,\text {d}x\nonumber \\ :=&I_1 +I_2 + I_3 +I_4 +I_5 +I_6+I_7. \end{aligned}$$
(62)

Sub-step 2. In this step, we obtain precise estimates for the terms \(I_1\) and \({I_4}\) and then an estimate of the left hand side of (62).

(i) Estimate of \({I_1}\). Young’s inequality leads to

$$\begin{aligned} |I_1| \leqslant&\frac{1}{2} \int _{Q_T} \rho ^2(t)\left| \frac{\rho ^{-2}(t) Lw_s(t)-\rho ^{-2}(t+\tau )Lw_s(t+\tau )}{\tau }\right| ^2 \,\text {d}x\text {d}t\nonumber \\&\quad + \frac{1}{2} \int _{Q_T} \rho ^2(t)\left| \left( \frac{\rho ^{-2}(t) -\rho ^{-2}(t+\tau )}{\tau }\right) Lw_s(t+\tau )\right| ^2 \,\text {d}x\text {d}t. \end{aligned}$$
(63)

(ii) Estimate of \({I_4}\). We have

$$\begin{aligned} |{I_4}|&=s\left| \int _0^T \frac{\left( \eta (t)\rho _1^{-1}(t)-\eta (t+\tau )\rho _1^{-1}(t+\tau )\right) \left( (w_s)_x(1,t)+ (w_s)_x(1,t+\tau )\right) }{2\tau } \right. \nonumber \\&\left. \times \frac{\left( \eta (t)\rho _1^{-1}(t)+\eta (t+\tau )\rho _1^{-1}(t+\tau ) \right) \left( (w_s)_x(1,t+\tau )- (w_s)_x(1,t)\right) }{\tau } \text {d}t\right| \nonumber \\&\leqslant 2s\int _0^T \left| \frac{\left( \eta (t)\rho _1^{-1}(t)-\eta (t+\tau )\rho _1^{-1}(t+\tau )\right) \left( (w_s)_x(1,t)+ (w_s)_x(1,t+\tau )\right) }{2\tau } \right| ^2 \text {d}t\nonumber \\&\ \ +\frac{s}{8}\int _0^T \left| \eta (t)\rho _1^{-1}(t)+\eta (t+\tau )\rho _1^{-1}(t+\tau ) \right| ^2\left| \frac{(w_s)_x(1,t+\tau )-(w_s)_x(1,t)}{\tau }\right| ^2 \text {d}t\nonumber \\&\leqslant 2s\int _0^T \left| \frac{\left( \eta (t)\rho _1^{-1}(t)-\eta (t+\tau )\rho _1^{-1}(t+\tau )\right) \left( (w_s)_x(1,t)+ (w_s)_x(1,t+\tau )\right) }{2\tau } \right| ^2 \text {d}t\nonumber \\&\ \ +\frac{s}{2}\int _0^T \frac{\left( \eta ^2(t)\rho _1^{-2}(t)+\eta ^2(t+\tau )\rho _1^{-2}(t+\tau ) \right) }{2}\left| \frac{(w_s)_x(1,t+\tau )-(w_s)_x(1,t)}{\tau }\right| ^2 \text {d}t. \end{aligned}$$
(64)

(iii) A first estimate of the left hand side of (62). The previous estimates and (62) give

$$\begin{aligned}&\frac{1}{2}\int _{Q_T} \rho ^2(t)\left| \frac{\rho ^{-2}(t) Lw_s(t)-\rho ^{-2}(t+\tau )Lw_s(t+\tau )}{\tau }\right| ^2 \,\text {d}x\text {d}t\nonumber \\&+ \frac{s}{2}\int _0^T\frac{\left( \eta ^2(t)\rho _1^{-2}(t)+\eta ^2(t+\tau )\rho _1^{-2}(t+\tau )\right) }{2}\left| \frac{(w_s)_x(1,t)- (w_s)_x(1,t+\tau )}{\tau }\right| ^2 \text {d}t\nonumber \\&\leqslant \frac{1}{2} \int _{Q_T} \rho ^2(t)\left| \left( \frac{\rho ^{-2}(t) -\rho ^{-2}(t+\tau )}{\tau }\right) Lw_s(t+\tau )\right| ^2 \,\text {d}x\text {d}t\nonumber \\&+ \left| {\frac{1}{\tau }}\int _{-\tau }^{0}\int _\Omega \rho ^{-2}(t+\tau )Lw_s(t+\tau )\left( \frac{L w_s(t+\tau )-Lw_s(t)}{\tau }\right) \,\text {d}x\text {d}t\right| \nonumber \\&+{\left| \frac{1}{\tau }\int _T^{T-\tau }\!\!\!\int _\Omega \rho ^{-2}(t+\tau )Lw_s(t+\tau )\left( \frac{L w_s(t+\tau )-Lw_s(t)}{\tau }\right) \,\text {d}x\text {d}t\right| }\nonumber \\&+2s\int _0^T\left| \frac{\left( \eta (t)\rho _1^{-1}(t)-\eta (t+\tau )\rho _1^{-1}(t+\tau )\right) \left( (w_s)_x(1,t)+(w_s)_x(1,t+\tau ) \right) }{2\tau }\right| ^2 \text {d}t\nonumber \\&+\left| \int _{Q_T}B \mathcal {T}_\tau w_s \,\text {d}x\text {d}t\right| +\left| \int _\Omega u_0 \mathcal {T}_\tau (w_s)_t(\cdot ,0) \,\text {d}x\right| +\left| \int _\Omega u_1 \mathcal {T}_\tau w_s(\cdot ,0) \,\text {d}x\right| \nonumber \\&:=J_1+J_2+J_3+J_4+J_5+J_6+ J_7. \end{aligned}$$
(65)

Sub-step 3 : We prove that the left hand side of (65) is bounded uniformly with respect to \({|\tau |}\in [0,\delta ]\).

(i) \(J_1\) is bounded. Since \(\rho ^{-2}\in {\mathcal {C}^\infty (\mathbb {R}\times \overline{\Omega })}\), \((\rho ^{-1})_t=-2s\lambda \beta (t-\frac{T}{2}) \phi \rho ^{-1}\) and \(Lw_s\in \mathcal {C}^0(\mathbb R;L^2(\Omega ))\):

$$\begin{aligned}&\int _{Q_T} \rho ^2(t)\left| \left( \frac{\rho ^{-2}(t) -\rho ^{-2}(t+\tau )}{\tau }\right) Lw_s(t+\tau )\right| ^2 \,\text {d}x\text {d}t\\&\quad \rightarrow 4s^2\lambda ^2\beta ^2\int _{Q_T} \biggl (t-\frac{T}{2}\biggr )^2 \phi ^2(t)\rho ^{2}(t)y_s^2 \,\text {d}x\text {d}t\end{aligned}$$

as \(\tau \rightarrow 0\) and thus \(J_1\) is bounded.

(ii) \(J_2\) is bounded. Since \(\rho ^{-2}Lw_s=y_s\in \mathcal {C}^0(\mathbb R;L^2(\Omega ))\), \(\rho ^{-2}\in {\mathcal {C}^\infty (\mathbb {R}\times \overline{\Omega })}\) and \(L w_s=\rho ^2y_s\in \mathcal {C}^1((-\infty ,\delta ];L^2(\Omega ))\) we have, as \(\tau \rightarrow 0\)

$$\begin{aligned}&\left| {\frac{1}{\tau }}\int _{-\tau }^{0}\int _\Omega \rho ^{-2}(t+\tau )Lw_s(t+\tau )\left( \frac{L w_s(t+\tau )-Lw_s(t)}{\tau }\right) \,\text {d}x\text {d}t\right| \\&\quad \rightarrow \left| \int _\Omega y_s(0)(\rho ^2y_s)_t(0)\right| \end{aligned}$$

and thus \(J_2\) is bounded.

(iii) \(J_3\) is bounded. Since \(\rho ^{-2}Lw_s=y_s\in \mathcal {C}^0(\mathbb R;L^2(\Omega ))\), \(\rho ^{-2}\in \mathcal {C}^\infty (\mathbb {R}\times \overline{\Omega })\) and \(L w_s=\rho ^2y_s\in \mathcal {C}^1([T-\delta , +\infty );L^2(\Omega ))\) we have, as \(\tau \rightarrow 0\)

$$\begin{aligned}&\left| \frac{1}{\tau }\int _T^{T-\tau }\!\!\!\int _\Omega \rho ^{-2}(t+\tau )Lw_s(t+\tau )\left( \frac{L w_s(t+\tau )-Lw_s(t)}{\tau }\right) \,\text {d}x\text {d}t\right| \\&\quad \rightarrow \left| \int _\Omega y_s(T)(\rho ^2y_s)_t(T)\right| =0 \end{aligned}$$

and thus \(J_3\) is bounded.

(iv) \(J_4\) is bounded. Since \((w_s)_x(1,\cdot )\in L^2(0,T)\) and \(\eta \rho ^{-1}_1\in \mathcal {C}^1(\mathbb R)\) we have

$$\begin{aligned} \begin{aligned}&2s\int _0^T\left| \frac{\left( \eta (t)\rho _1^{-1}(t)-\eta (t+\tau )\rho _1^{-1}(t+\tau )\right) \left( (w_s)_x(1,t)+(w_s)_x(1,t+\tau ) \right) }{2\tau }\right| ^2 \text {d}t\\&\rightarrow 2s\int _0^T\left| (\eta \rho _1^{-1})_t(t) (w_s)_x(1,t)\right| ^2 \text {d}t\end{aligned} \end{aligned}$$

as \(\tau \rightarrow 0\) and thus \({J_4}\) is bounded.

(v) \(J_5\) is bounded. For \(\tau \) small enough, since \(B\in \mathcal {D}(\mathbb R;L^2(\Omega ))\) and \(w_s\in \mathcal {C}{{}^0}(\mathbb R; L^2(\Omega ))\), we have

$$\begin{aligned} \left| \int _{Q_T}B \mathcal {T}_\tau w_s \,\text {d}x\text {d}t\right| = \left| \int _{-\tau }^{T+\tau }\!\!\!\int _\Omega \mathcal {T}_\tau B w_s\,\text {d}x\text {d}t\right| \rightarrow \left| \int _{Q_T}B_{tt} w_s\,\text {d}x\text {d}t\right| \end{aligned}$$
(66)

as \(\tau \rightarrow 0\) and thus \({ J_5}\) is bounded.

(vi) \(J_6\) is bounded. We have \(L w_s=\rho ^2 y_s\in \mathcal {C}^0(\mathbb R;L^2(\Omega ))\) and \(w_s\in \mathcal {C}^0(\mathbb R;H^1_0(\Omega ))\), thus \((w_s)_{tt}= Lw_s + (w_s)_{xx} \in \mathcal {C}(\mathbb R;H^{-1}(\Omega ))\). We then have, for all \(t \in \mathbb R \):

$$\begin{aligned} (w_s)_t(t)- (w_s)_t(0)=\int _0^t Lw_s(\xi ) \,\text {d}\xi + \int _0^t (w_s)_{xx}(\xi )\,\text {d}\xi . \end{aligned}$$

This yields

$$\begin{aligned} \mathcal {T}_\tau (w_s)_t(0)&=\frac{(w_s)_t(\tau )-2 (w_s)_t(0)+ (w_s)_t(-\tau )}{\tau ^2}\\&=\frac{1}{\tau ^2}\bigg (\int _0^{\tau } L w_s(\xi )\,\text {d}\xi +\int _0^{-\tau } L w_s(\xi )\,\text {d}\xi \\&\quad +\int _0^{\tau } (w_s)_{xx}(\xi )\,\text {d}\xi +\int _0^{-\tau } (w_s)_{xx} (\xi )\,\text {d}\xi \bigg ) \\&=\frac{2}{\tau } \int _0^{\tau }\frac{\xi }{\tau } \bigg (\frac{L w_s(\xi )-L w_s(-\xi )}{2\xi }\bigg )\,\text {d}\xi \\&\quad + \frac{2}{\tau } \int _0^{\tau }\frac{\xi }{\tau } \bigg (\frac{ (w_s)_{xx}(\xi )- (w_s)_{xx} (-\xi )}{2\xi }\bigg ) \,\text {d}\xi . \end{aligned}$$

Now, since \(L w_s=\rho ^2y_s\in \mathcal {C}^1((-\infty ,\delta ];L^2(\Omega ))\), we write that

$$\begin{aligned}&\int _\Omega u_0\frac{2}{\tau } \int _0^{\tau } \frac{\xi }{\tau } \bigg (\frac{L w_s(\xi )-L w_s(-\xi )}{2\xi } \bigg )\,\text {d}\xi \,\text {d}x\nonumber \\&\rightarrow \int _\Omega u_0(\rho ^2y_s)_t(0)\,\text {d}x=-2s\lambda \beta T\int _\Omega \phi (0)\rho ^2(0)u_0^2\,\text {d}x+ \int _\Omega \rho ^2(0) u_0u_1 \,\text {d}x\ \ \text {as } \tau \rightarrow 0. \end{aligned}$$
(67)

On the other hand, since \(u_0\in H^2(\Omega )\cap H^1_0(\Omega )\) and \(w_s\in \mathcal {C}^0(\mathbb R; H^1_0(\Omega ))\):

$$\begin{aligned}&\frac{2}{\tau } \int _0^\tau \left\langle \frac{\xi }{\tau } \bigg (\frac{ (w_s)_{xx}(\xi )- (w_s)_{xx} (-\xi )}{2\xi }\bigg ) , u_0 \right\rangle _{H^{-1}, H^1_0} \,\text {d}\xi \nonumber \\&= \frac{2}{\tau } \int _0^\tau \frac{\xi }{\tau } \int _\Omega (u_0)_{xx} \frac{(w_s)(\xi )-(w_s)(-\xi )}{2\xi } \,\text {d}x \,\text {d}\xi \nonumber \\&\rightarrow \int _\Omega (u_0)_{xx} (w_s)_t(0) \,\text {d}x\quad \text {as}\, \tau \rightarrow 0 \end{aligned}$$
(68)

since moreover \(w_s\in \mathcal {C}^1(\mathbb {R};L^2(\Omega ))\). Thus

$$\begin{aligned} \int _\Omega u_0 \mathcal {T}_\tau (w_s)_t(\cdot ,0) \,\text {d}x&\rightarrow -2s\lambda \beta T\int _\Omega \phi (0)\rho ^2(0)u_0^2 + \int _\Omega \rho ^2(0) u_0u_1\nonumber \\&\quad +\int _\Omega (u_0)_{xx} (w_s)_t(0) \,\text {d}x \end{aligned}$$
(69)

as \(\tau \rightarrow 0\) and thus \({J_6}\) is bounded.

(vii) \(J_7\) is bounded. We have \(L w_s=\rho ^2 y_s\in \mathcal {C}^0(\mathbb R;L^2(\Omega ))\) and \(w_s\in \mathcal {C}^1(\mathbb R;H^1_0(\Omega ))\), thus \((w_s)_{tt}= \rho ^2 y_s + (w_s)_{xx} \in \mathcal {C}^0(\mathbb R;H^{-1}(\Omega ))\). Therefore

$$ \mathcal {T}_\tau w(0)=\frac{w(\tau )-2w(0)+w(-\tau )}{\tau ^2}\rightarrow (w_s)_{tt}(0)=(w_s)_{xx}(0)+\rho ^2(0)u_0\hbox { in } H^{-1}(\Omega )$$

as \(\tau \rightarrow 0\) and thus

$$\begin{aligned} \int _\Omega u_1 \mathcal {T}_\tau w (\cdot ,0) \,\text {d}x\rightarrow&\langle (w_s)_{tt}(0),u_1\rangle _{H^{-1}(\Omega )\times H^1_0(\Omega )}\nonumber \\&=\langle (w_s)_{xx}(0),u_1\rangle _{H^{-1}(\Omega )\times H^1_0(\Omega )}+\int _\Omega \rho ^2(0) u_1 u_0\,\text {d}x\\&= -\int _\Omega (w_s)_{x}(\cdot ,0)(u_1)_x\,\text {d}x+\int _\Omega \rho ^2(0) u_1 u_0 \nonumber \,\text {d}x. \end{aligned}$$
(70)

as \(\tau \rightarrow 0\).

\({J_7}= \left| \int _\Omega u_1 \mathcal {T}_\tau w (\cdot ,0) \,\text {d}x\right| \) is therefore bounded.

(viii) Then we can conclude, from (65), that the terms

$$\begin{aligned} \int _{Q_T} \rho ^2(t)\left| \frac{\rho ^{-2}(t) Lw_s(t)-\rho ^{-2}(t+\tau )Lw_s(t+\tau )}{\tau }\right| ^2 \,\text {d}x\text {d}t\end{aligned}$$

and

$$\begin{aligned} \int _0^T\frac{\left( \eta ^2(t)\rho _1^{-2}(t)+\eta ^2(t+\tau )\rho _1^{-2}(t+\tau )\right) }{2}\left| \frac{(w_s)_x(1,t)- (w_s)_x(1,t+\tau )}{\tau }\right| ^2 \text {d}t\end{aligned}$$

are bounded. Remark that this implies that the two terms \(\int _{Q_T}\rho ^{-2}(t) |L (\frac{\delta _\tau w_s}{\tau })|^2 \,\text {d}x\text {d}t\) and \(\int _0^T \eta ^2(t)\rho ^{-2}_1(t) |(\frac{\delta _\tau w_s}{\tau })_x(1,t)|^2 \text {d}t\) are bounded; indeed,

$$\begin{aligned}&\int _0^T \eta ^2(t)\rho ^{-2}_1(t) |(\frac{\delta _\tau w_s}{\tau })_x(1,t)|^2 \text {d}t\\&\leqslant 2\int _0^T\frac{\left( \eta ^2(t)\rho _1^{-2}(t)+\eta ^2(t+\tau )\rho _1^{-2}(t+\tau )\right) }{2}\left| \frac{(w_s)_x(1,t)- (w_s)_x(1,t+\tau )}{\tau }\right| ^2 \text {d}t. \end{aligned}$$

We also have

$$\begin{aligned} \begin{aligned}&\int _{Q_T}\rho ^{-2}(t) |L (\frac{\delta _\tau w_s}{\tau })|^2 \,\text {d}x\text {d}t\\&\quad \leqslant 2\int _{Q_T} \rho ^2(t)\left| \frac{\rho ^{-2}(t) Lw_s(t)-\rho ^{-2}(t+\tau )Lw_s(t+\tau )}{\tau }\right| ^2 \,\text {d}x\text {d}t\\&\qquad +2\int _{Q_T} \rho ^2(t)\left| \frac{\rho ^{-2}(t)-\rho ^{-2}(t+\tau )}{\tau }Lw_s(t+\tau )\right| ^2 \,\text {d}x\text {d}t\\ \end{aligned} \end{aligned}$$

and each term of the right hand side is bounded.

Sub-step 4. In this step, we prove that \(v_s\in H^1(0,T)\) and \(y_s\in \mathcal {C}^0([0,T];H^1(\Omega ))\cap \mathcal {C}^1([0,T];L^2(\Omega ))\).

Since \(\frac{\delta _\tau w_s}{\tau }\in \mathcal {C}^0([0,T];H_0^1(\Omega ))\cap \mathcal {C}^1([0,T];L^2(\Omega ))\) and satisfies \((\frac{\delta _\tau w_s}{\tau })_x(1,\cdot )\in L^2(0,T)\) then the Carleman estimates (10) gives

$$\begin{aligned}&s \int _{Q_T}\rho ^{-2}(t) \biggl (| (\frac{\delta _\tau w_s}{\tau })_{t}|^2 + | (\frac{\delta _\tau w_s}{\tau })_x|^2\biggr ) \,\text {d}x\text {d}t\\&\quad + s^3 \int _{Q_T}\rho ^{-2}(t) | \frac{\delta _\tau w_s}{\tau }|^2 \,\text {d}x\text {d}t\\&\quad + s \int _\Omega \rho ^{-2}(0) \biggl (|(\frac{\delta _\tau w_s}{\tau })_t(x,0)|^2 + |(\frac{\delta _\tau w_s}{\tau })_x(x,0)|^2\biggr ) \,\text {d}x\\&\quad + s^3 \int _\Omega \rho ^{-2}(0) |\frac{\delta _\tau w_s}{\tau }(x,0)|^2 \,\text {d}x\\&\quad \leqslant C \int _{Q_T}\rho ^{-2}(t) |L (\frac{\delta _\tau w_s}{\tau })|^2 \,\text {d}x\text {d}t+ C s \int _0^T \eta ^2(t)\rho ^{-2}_1(t) |(\frac{\delta _\tau w_s}{\tau })_x(1,t)|^2 \text {d}t. \end{aligned}$$

Therefore, since the right hand side is bounded, \((\frac{\delta _\tau w_s}{\tau })_{t}\) and \((\frac{\delta _\tau w_s}{\tau })_x\) are bounded in \(L^2(Q_T)\) and thus \((w_s)_{tt}\in L^2(Q_T)\) and \((w_s)_{t}\in L^2(0,T;H^1_0(\Omega ))\). Moreover, \(\frac{\delta _\tau w_s}{\tau }(\cdot ,0)\) is bounded in \(H^1_0(\Omega )\) thus \((w_s)_t(\cdot ,0)\in H^1_0(\Omega )\). We also have \(L (\frac{\delta _\tau w_s}{\tau }) \) bounded in \(L^2(Q_T)\) so \(L( w_s)_t\in L^2(Q_T)\). Thus \((w_s)_t\) satisfies

$$\begin{aligned} \left\{ \begin{aligned}&L (w_s)_t \in L^2(Q_T), \\&(w_s)_t(0,t)=(w_s)_t(1,t) =0, \quad t\in (0,T) \\&((w_s)_t (0),(w_s)_{tt}(0))\in H_0^1(\Omega )\times L^2(\Omega ) \end{aligned} \right. \end{aligned}$$
(71)

and thus \((w_s)_t\in \mathcal {C}^0([0,T];H^1_0(\Omega ))\cap \mathcal {C}^1([0,T];L^2(\Omega ))\) and \((w_s)_{tx}(1,\cdot )\in L^2(0,T)\). Therefore from the definition of \(v_s\), \(v_s\in H^1(0,T)\) while from the equation satisfied by \((y_s,v_s)\) (see (17)), \(y_s\in \mathcal {C}^0([0,T];H^1(\Omega ))\cap \mathcal {C}^1([0,T];L^2(\Omega ))\).

Remark 1 We then have \(w_s\in \mathcal {C}^1([0,T];H^1_0(\Omega ))\cap \mathcal {C}^2([0,T];L^2(\Omega ))\) and from the equation satisfied by \(w_s\), since \(Lw_s\in \mathcal {C}^1([0,T];L^2(\Omega ))\) we deduce that \((w_s)_{xx}=(w_s)_{tt}-L w_s \in \mathcal {C}^0([0,T];L^2(\Omega ))\) and thus that \((w_s)_{xx}(\cdot ,0)\in L^2(\Omega )\).

Step 2 : In this step, we give estimates on \((v_s)_t\) and \((y_s)_t\).

First of all, since \((w_s)_t\in \mathcal {C}^0([0;T];H^1_0(\Omega ))\cap \mathcal {C}^1([0,T];L^2(\Omega ))\), \(L (w_s)_t\in L^2(Q_T)\) and \((w_s)_{tx}(1,\cdot )\in L^2(0,T)\), we can write the Carleman estimate (10) for \((w_s)_t\) leading to

$$\begin{aligned}&s \int _{Q_T}\rho ^{-2}(t) (| (w_s)_{tt}|^2 + | (w_s)_{tx}|^2) \,\text {d}x\text {d}t+ s^3 \int _{Q_T}\rho ^{-2}(t) | (w_s)_t|^2 \,\text {d}x\text {d}t\nonumber \\&\quad + s \int _\Omega \rho ^{-2}(0) (|(w_s)_{tt}(x,0)|^2 + (w_s)_{tx}(x,0)|^2) \,\text {d}x+ s^3 \int _\Omega \rho ^{-2}(0) |(w_s)_t(x,0)|^2 \,\text {d}x\nonumber \\&\quad \leqslant C \int _{Q_T}\rho ^{-2}(t) |(L w_s)_t|^2 \,\text {d}x\text {d}t+ C s \int _0^T \eta ^2(t)\rho ^{-2}_1(t) |(w_s)_{tx}(1,t)|^2 \text {d}t. \end{aligned}$$
(72)

Sub-step 1 : In this step, we pass to the limit when \(\tau \rightarrow 0\) in equation (62). We have, since \(y_s=\rho ^{-2} Lw_s\in \mathcal {C}^1(\mathbb {R};L^2(\Omega ))\) :

$$\begin{aligned} \int _{Q_T} \rho ^2(t)\left| \frac{\rho ^{-2}(t) Lw_s(t)-\rho ^{-2}(t+\tau )Lw_s(t+\tau )}{\tau }\right| ^2 \,\text {d}x\text {d}t\rightarrow \int _{Q_T} \rho ^2(t)\left| (y_s)_t\right| ^2 \,\text {d}x\text {d}t\end{aligned}$$

as \(\tau \rightarrow 0\) and since \((w_s)_{tx}(1,\cdot )\in L^2(-\delta ,T+\delta )\) and \(\eta \rho _1^{-1}\in \mathcal {C}(\mathbb {R})\) :

$$\begin{aligned} \begin{aligned} \int _0^T \frac{\left( \eta ^2(t)\rho _1^{-2}(t)+\eta ^2(t+\tau )\rho _1^{-2}(t+\tau ) \right) }{2}&\left| \frac{(w_s)_x(1,t+\tau )-(w_s)_x(1,t)}{\tau }\right| ^2 \text {d}t\\&\rightarrow \int _0^T \eta ^2(t)\rho _1^{-2}(t) \left| (w_s)_{tx}(1,t)\right| ^2 \text {d}t\end{aligned} \end{aligned}$$

as \(\tau \rightarrow 0\). Since \(y_s=\rho ^{-2} Lw_s\in \mathcal {C}^1(\mathbb R;L^2(\Omega ))\), \(Lw_s\in \mathcal {C}^1(\mathbb R;L^2(\Omega ))\) and \((\rho ^{-1})_t=-2s\lambda \beta (t-\frac{T}{2}) \phi \rho ^{-1}\) in \(Q_T\), we infer that

$$\begin{aligned}&\int _{Q_T} \rho ^2(t) \left( \frac{\rho ^{-2}(t) Lw_s(t)-\rho ^{-2}(t+\tau )Lw_s(t+\tau )}{\tau }\right) \\&\quad \times \left( \frac{\rho ^{-2}(t) -\rho ^{-2}(t+\tau )}{\tau }\right) Lw_s(t+\tau ) \,\text {d}x\text {d}t\\&\quad \rightarrow -2s\lambda \beta \int _{Q_T}(t-\frac{T}{2}) \phi (t) \rho ^2(t) (y_s)_ty_s\,\text {d}x\text {d}t, \end{aligned}$$
$$\begin{aligned}&\frac{1}{\tau }\int _{-\tau }^{0}\int _\Omega \rho ^{-2}(t+\tau )Lw_s(t+\tau )\left( \frac{L w_s(t+\tau )-Lw_s(t)}{\tau }\right) \,\text {d}x\text {d}t\\&\quad \rightarrow \int _\Omega y_s(0)(\rho ^{2}y_s)_t(0)\,\text {d}x\end{aligned}$$

and

$$\begin{aligned} \frac{1}{\tau }\int _T^{T-\tau }\int _\Omega \rho ^{-2}(t+\tau )Lw_s(t+\tau )\left( \frac{L w_s(t+\tau )-Lw_s(t)}{\tau }\right) \,\text {d}x\text {d}t\rightarrow 0 \end{aligned}$$

as \(\tau \rightarrow 0\).

Similarly, since \(w_s\in \mathcal {C}^2(\mathbb R;L^2(\Omega ))\) and \((w_s)_{tx}(1,\cdot )\in L^2(-\delta ,T+\delta )\),

$$\begin{aligned}&\int _0^T \frac{\left( \eta ^2(t)\rho _1^{-2}(t) - \eta ^2(t+\tau )\rho _1^{-2}(t+\tau )\right) \left( (w_s)_x(1,t)+(w_s)_x(1,t+\tau ) \right) }{2\tau } \nonumber \\&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \times \left( \frac{(w_s)_x(1,t+\tau )-(w_s)_x(1,t)}{\tau }\right) \text {d}t\\&\rightarrow \int _0^T (\eta ^2\rho _1^{-2})_t(w_s)_x(1,t)(w_s)_{tx}(1,t)\text {d}t\end{aligned}$$

and

$$\begin{aligned} \int _{Q_T}B \mathcal {T}_\tau w_s \,\text {d}x\text {d}t\rightarrow \int _{Q_T}B (w_s)_{tt} \,\text {d}x\text {d}t\end{aligned}$$

as \(\tau \rightarrow 0\). Since \((w_s)_{tt}(\cdot ,0)\in L^2(\Omega )\), the convergence (70) reads

$$\begin{aligned} \int _\Omega u_1 \mathcal {T}_\tau w_s(\cdot ,0) \,\text {d}x\rightarrow \int _\Omega (w_s)_{tt}(\cdot ,0)u_1\,\text {d}x. \end{aligned}$$

Similarly, since \((w_s)_t(\cdot ,0)\in H^1_0(\Omega )\), (69) reads

$$\begin{aligned}&\int _\Omega u_0 \mathcal {T}_\tau (w_s)_t(\cdot ,0) \,\text {d}x\rightarrow -2s\lambda \beta T\int _\Omega \phi (0)\rho ^2(0)u_0^2\,\text {d}x+ \int _\Omega \rho ^2(0) u_0u_1\,\text {d}x\\&\quad -\int _\Omega (u_0)_{x} (w_s)_{tx}(\cdot ,0) \,\text {d}x. \end{aligned}$$

We conclude that the limit with respect to \(\tau \rightarrow 0\) in (62) leads to the following equality

$$\begin{aligned}&\int _{Q_T} \rho ^2(t)\left| (y_s)_t\right| ^2 \,\text {d}x\text {d}t+s\int _0^T \eta ^2(t)\rho _1^{-2}(t) \left| (w_s)_{tx}(1,t)\right| ^2 \text {d}t\nonumber \\&\quad =-2s\lambda \beta \int _{Q_T}(t-\frac{T}{2}) \phi (t) \rho ^2(t) (y_s)_ty_s\,\text {d}x\text {d}t- \int _\Omega y_s(0)( \rho ^2y_s)_t(0)\nonumber \\&\quad +s\int _0^T (\eta ^2\rho _1^{-2})_t(t)(w_s)_x(1,t)(w_s)_{tx}(1,t)\text {d}t\nonumber \\&\quad - \int _{Q_T}B (w_s)_{tt} \,\text {d}x\text {d}t-\int _\Omega (w_s)_{tt}(\cdot ,0)u_1\,\text {d}x\nonumber \\&\quad -2s\lambda \beta T\int _\Omega \phi (0)\rho ^2(0)u_0^2\,\text {d}x+ \int _\Omega \rho ^2(0) u_1 u_0\,\text {d}x\nonumber \\&\quad -\int _\Omega (u_0)_{x} (w_s)_{tx}(\cdot ,0) \,\text {d}x\nonumber \\&\quad :=K_1+K_2+K_3+K_4+K_5+K_6+K_7+K_8. \end{aligned}$$
(73)

Sub-step 2 : In this step, we estimate each term \(K_i, i=1,\cdots ,8\).

(i) We get that, there exists \(C>0\) only depending on T such that

$$|K_1|\leqslant \frac{1}{8}\int _{Q_T} \rho ^2(t) |(y_s)_t|^2\,\text {d}x\text {d}t+Cs^2\int _{Q_T} \rho ^2(t) |y_s|^2\,\text {d}x\text {d}t.$$

(ii) Similarly, recalling that \(y_s(\cdot ,0)=u_0\) and \((y_s)_t(\cdot ,0)=u_1\), there exists \(C>0\) such that

$$|K_2|\leqslant Cs \Vert \rho (0)u_0\Vert ^2_{L^2(\Omega )}+ \Vert \rho (0)u_0\Vert _{L^2(\Omega )}\Vert \rho (0)u_1\Vert _{L^2(\Omega )}.$$

(iii) Using that \((\rho _1^{-1})_t=-2s\lambda \beta (t-\frac{T}{2}) \phi \rho _1^{-1}\), we obtain

$$\begin{aligned}&|K_3|=\left| s\int _0^T (\eta ^2\rho _1^{-2})_t(w_s)_x(1,t)(w_s)_{tx}(1,t)\text {d}t\right| \\&\leqslant 2\left( s\int _0^T |(\eta \rho _1^{-1})_t|^2|(w_s)_x(1,t)|^2 \text {d}t\right) ^{1/2}\left( s\int _0^T \eta ^2(t)\rho _1^{-2}(t)| (w_s)_{tx}(1,t)|^2\text {d}t\right) ^{1/2}\\&\leqslant C\left( s^3\int _0^T \eta ^2(t)\rho _1^{-2}(t)|(w_s)_x(1,t)|^2 \text {d}t+s\int _0^T\rho _1^{-2}(t)|(w_s)_x(1,t)|^2 \text {d}t\right) ^{1/2}\\&\times \left( s\int _0^T \eta ^2(t)\rho _1^{-2}(t)| (w_s)_{tx}(1,t)|^2\text {d}t\right) ^{1/2}\\&\leqslant C\left( s\int _\delta ^{T-\delta } \frac{\rho _1^2(t)}{\eta ^2(t)}v_s^2 \text {d}t+s\int _0^T\rho _1^{-2}(t)|(w_s)_x(1,t)|^2 \text {d}t\right) \\&\qquad +\frac{s}{8}\int _0^T \eta ^2(t)\rho _1^{-2} | (w_s)_{tx}(1,t)|^2\text {d}t. \end{aligned}$$

We now estimate the term \(\int _0^T\rho _1^{-2}|(w_s)_x(1,t)|^2 \text {d}t\) appearing in the previous inequality: proceeding as in [23, Lemma 3.7] with \(q(x,t)=x\rho ^{-2}(x,t)\) such that \(q(0,t)=0\) and \(q(1,t)=\rho _1^{-2}(t)\), we get the equality

$$\begin{aligned}&\frac{1}{2}\int _0^T \rho _1^{-2}(t)|(w_s)_x(1,t)|^2\\&\quad =2\int _{Q_T} x \rho ^{-1}\rho _t^{-1} w_x w_t +\frac{1}{2}\int _{Q_T} (\rho ^{-2}-2x\rho ^{-1}\rho _x^{-1})(w_x^2+w_t^2)\\&\qquad +\int _\Omega [x\rho ^{-2} w_tw_x]_0^T. \end{aligned}$$

Writing that \(\vert \rho ^{-1}\rho _x^{-1}\vert \leqslant Cs \rho ^{-2}\) and \(\vert \rho ^{-1}\rho _t^{-1}\vert \leqslant Cs \rho ^{-2}\), we obtain (since \(s\geqslant 1\))

$$\begin{aligned}&\frac{1}{2}\int _0^T \rho _1^{-2}(t)|(w_s)_x(1,t)|^2\\&\quad \leqslant Cs\int _{Q_T} \rho ^{-2}(w_x^2+w_t^2) +Cs\int _\Omega \biggl (\rho ^{-2}(0)(w_t^2+w_x^2)(0)\\&\qquad +\rho ^{-2}(T)(w_t^2+w_x^2)(T)\biggr ) \end{aligned}$$

leading, using the Carleman estimate (10), to

$$\begin{aligned} s\int _0^T\rho _1^{-2}|(w_s)_x(1,t)|^2 \text {d}t\leqslant Cs\left( \Vert \rho y_s\Vert _{L^2(Q_T)}^2+s^{-1}\Vert \frac{\rho _1}{\eta }v_s\Vert _{L^2(\delta ,T-\delta )}^2\right) . \end{aligned}$$
(74)

Thus,

$$|K_3|\leqslant Cs\left( \Vert \rho y_s\Vert _{L^2(Q_T)}^2+ \Vert \frac{\rho _1}{\eta }v_s\Vert _{L^2(\delta ,T-\delta )}^2\right) +\frac{s}{8}\int _0^T \eta ^2(t)\rho _1^{-2} (w_s)_{tx}(1,t)\text {d}t.$$

(iv) Using the Carleman estimate (72) we have

$$\begin{aligned}&|K_4|=\left| \int _{Q_T}B (w_s)_{tt} \,\text {d}x\text {d}t\right| \leqslant \left( s^{-1}\int _{Q_T}\rho ^2B^2\right) ^{1/2} \left( s\int _{Q_T}\rho ^{-2}|(w_s)_{tt}|^2\right) ^{1/2}\\&\leqslant C\left( s^{-1}\int _{Q_T}\rho ^2B^2\right) ^{1/2} \left( \int _{Q_T}\rho ^{-2} |(\rho ^2 y_s)_t |^2 \,\text {d}x\text {d}t+ s \int _0^T \eta ^2(t)\rho ^{-2}_1 |(w_s)_{tx}(1,t)|^2 \text {d}t\right) ^{1/2}\\&\leqslant C\left( s^{-1}\int _{Q_T}\rho ^2B^2\right) ^{1/2} \left( s^2 \int _{Q_T}\rho ^{2} | y_s |^2 \,\text {d}x\text {d}t+\int _{Q_T}\rho ^{2}|( y_s)_t |^2 \,\text {d}x\text {d}t\right. \\&\quad \left. + s \int _0^T \eta ^2(t)\rho ^{-2}_1 |(w_s)_{tx}(1,t)|^2 \text {d}t\right) ^{1/2}\\&\leqslant C\left( s^{-1}\int _{Q_T}\rho ^2B^2 + s^2 \int _{Q_T}\rho ^{2} | y_s |^2 \,\text {d}x\text {d}t\right) +\frac{1}{8}\int _{Q_T}\rho ^{2} |( y_s)_t |^2 \,\text {d}x\text {d}t\\&\quad + \frac{s}{8} \int _0^T \eta ^2(t)\rho ^{-2}_1 |(w_s)_{tx}(1,t)|^2 \text {d}t. \end{aligned}$$

(v) Similarly, using again the Carleman estimate (72) we have

$$\begin{aligned} |K_5|&=\left| \int _\Omega (w_s)_{tt}(\cdot ,0)u_1\,\text {d}x\right| \leqslant \Vert \rho (0)u_1\Vert _{L^2(\Omega )} \Vert \rho ^{-1}(0)(w_s)_{tt}(\cdot ,0)\Vert _{L^2(\Omega )}\\&\leqslant C s^{-1/2}\Vert \rho (0) u_1\Vert _{L^2(\Omega )} \left( \int _{Q_T}\rho ^{-2}(t) |(\rho ^2 y_s)_t |^2 \,\text {d}x\text {d}t\right. \\&\quad \left. + s \int _0^T \eta ^2(t)\rho ^{-2}_1 |(w_s)_{tx}(1,t)|^2 \text {d}t\right) ^{1/2}\\&\leqslant C s^{-1/2}\Vert \rho (0) u_1\Vert _{L^2(\Omega )} \left( s^2 \int _{Q_T}\rho ^{2} | y_s |^2 \,\text {d}x\text {d}t+\int _{Q_T}\rho ^{2} |( y_s)_t |^2 \,\text {d}x\text {d}t\right. \\&\left. + s \int _0^T \eta ^2(t)\rho ^{-2}_1 |(w_s)_{tx}(1,t)|^2 \text {d}t\right) ^{1/2}\\&\leqslant C\left( s^{-1}\Vert \rho (0) u_1\Vert ^2_{L^2(\Omega )} + s^2 \int _{Q_T}\rho ^{2} | y_s |^2 \,\text {d}x\text {d}t\right) +\frac{1}{8} \int _{Q_T}\rho ^{2} |( y_s)_t |^2 \,\text {d}x\text {d}t\\&\quad + \frac{s}{8} \int _0^T \eta ^2(t)\rho ^{-2}_1 |(w_s)_{tx}(1,t)|^2 \text {d}t. \end{aligned}$$

(vi) Simpler, we get

$$|K_6|\leqslant Cs\Vert \rho (0)u_0\Vert ^2_{L^2(\Omega )} $$

(vii) and

$$ |K_7|\leqslant \Vert \rho (0)u_0\Vert _{L^2(\Omega )}\Vert \rho (0)u_1\Vert _{L^2(\Omega )}. $$

(viii) Eventually, (72) leads to

$$\begin{aligned} |K_8|&=\left| \int _\Omega (u_0)_{x} (w_s)_{tx}(\cdot ,0)\right| \leqslant \Vert \rho (0)(u_0)_x\Vert _{L^2(\Omega )} \Vert \rho ^{-1}(0)(w_s)_{tx}(\cdot ,0)\Vert _{L^2(\Omega )}\\&\leqslant Cs^{-1/2} \Vert \rho (0) (u_0)_{x}\Vert _{L^2(\Omega )} \left( \int _{Q_T}\rho ^{-2}(t) |(\rho ^2 y_s)_t |^2 \,\text {d}x\text {d}t\right. \\&\quad \left. + C s \int _0^T \eta ^2(t)\rho ^{-2}_1(t) |(w_s)_{tx}(1,t)|^2 \text {d}t\right) ^{1/2}\\&\leqslant Cs^{-1/2} \Vert \rho (0) (u_0)_{x}\Vert _{L^2(\Omega )} \left( s^2 \int _{Q_T}\rho ^{2}(t) | y_s |^2 \,\text {d}x\text {d}t+\int _{Q_T}\rho ^{2}(t) |( y_s)_t |^2 \,\text {d}x\text {d}t\right. \\&\quad + \left. s \int _0^T \eta ^2(t)\rho ^{-2}_1(t) |(w_s)_{tx}(1,t)|^2 \text {d}t\right) ^{1/2}\\&\leqslant C \left( s^{-1} \Vert \rho (0) (u_0)_{x}\Vert ^2_{L^2(\Omega )} + s^2 \int _{Q_T}\rho ^{2}(t) | y_s |^2 \,\text {d}x\text {d}t\right) \\&\quad +\frac{1}{8}\int _{Q_T}\rho ^{2}(t) |( y_s)_t |^2 \,\text {d}x\text {d}t\\&\quad + \frac{s}{8} \int _0^T \eta ^2(t)\rho ^{-2}_1(t) |(w_s)_{tx}(1,t)|^2 \text {d}t. \end{aligned}$$

Sub-step 3 : In this step, we give estimates on \((v_s)_t\) and \((y_s)_t\). Collecting the previous estimates, we get from (73)

$$\begin{aligned} \begin{aligned} \int _{Q_T}&\rho ^2(t)\left| (y_s)_t\right| ^2 \,\text {d}x\text {d}t+s\int _0^T \eta ^2(t)\rho _1^{-2}(t) \left| (w_s)_{tx}(1,t)\right| ^2 \text {d}t\\&\leqslant C\left( s^2\Vert \rho y_s \Vert ^2_{L^2(Q_T)}+s \Vert \frac{\rho _1}{\eta }v\Vert _{L^2(\delta ,T-\delta )}^2 + s^{-1}\int _{Q_T}\rho ^2B^2 \right. \\&\qquad \left. +s\Vert \rho (0)u_0\Vert ^2_{L^2(\Omega )} +s^{-1}\Vert \rho (0)(u_0)_x\Vert _{L^2(\Omega )} ^2+s^{-1}\Vert \rho (0) u_1\Vert _{L^2(\Omega )}^2\right) . \end{aligned} \end{aligned}$$
(75)

We have

$$\begin{aligned} \begin{aligned}&s^{-1}\int _0^T \rho _1^2(t) \left| (v_s)_t\right| ^2dt\\&\leqslant C\left( s\int _0^T \eta ^2(t)\rho _1^{-2}(t) \left| (w_s)_{tx}(1,t)\right| ^2+s\int _\delta ^{T-\delta } \frac{\rho _1^2(t)}{\eta ^2(t)}v_s^2(t) \text {d}t\right. \\&\quad \left. +s\int _0^T \rho _1^{-2}(t) \left| (w_s)_{x}(1,t)\right| ^2\right) \end{aligned} \end{aligned}$$
(76)

thus using the estimates (74) and (14), (75) implies for \(s\geqslant s_0\geqslant 1\) that

$$\begin{aligned} \begin{aligned}&\int _{Q_T} \rho ^2(t)\left| (y_s)_t\right| ^2 \,\text {d}x\text {d}t+s^{-1}\int _0^T \rho _1^2(t) \left| (v_s)_t\right| ^2dt\\&\leqslant C \left( s^{-1} \Vert \rho B\Vert ^2_{L^2(Q_T)} +se^{-2s}\Vert u_0\Vert ^2_{L^2(\Omega )} +s^{-1}e^{-2s}\Vert (u_0)_x\Vert _{L^2(\Omega )} ^2\right. \\&\quad \left. +s^{-1}e^{-2s}\Vert u_1\Vert _{L^2(\Omega )}^2\right) \\ \end{aligned} \end{aligned}$$
(77)

which gives the announced estimate (19) in the case of regular data.

Step 3 : Case where \(B\in L^2(Q_T)\) and \((u_0,u_1)\in H^1_0(\Omega )\times L^2(\Omega )\). We proceed by density: there exist \((u_0^n)_{n\in \mathbb N}\in H^2(\Omega )\cap H^1_0(\Omega )\), \((u_1^n)_{n\in \mathbb N}\in H^1_0(\Omega )\) and \((B^n)_{n\in \mathbb N}\in \mathcal {D}(0,T;L^2(\Omega ))\) such that \(u_0^n\rightarrow u_0\) in \(H^1_0(\Omega )\), \(u_1^n\rightarrow u_1\) in \(L^2(\Omega )\) and \(B^n\rightarrow B\) in \(L^2(Q_T)\) as \(n\rightarrow \infty \).

Let \((y^n_s,v^n_s)\) be the solution of (6) given in Theorem 6 associated to \((u_0^n, u_1^n,B^n)\). Then, by linearity, we have for all \((n,m)\in \mathbb N^2\), from (14)

$$\begin{aligned}&\Vert \rho (y^n_s-y^m_s)\Vert _{L^2(Q_T)} + s^{-1/2}\Vert \rho _1( v^n_s-v^m_s)\Vert _{L^2(0,T)} \\&\quad \leqslant \Vert \rho (y^n_s-y^m_s)\Vert _{L^2(Q_T)} + s^{-1/2}\left\| \frac{\rho _1}{\eta } (v^n_s-v^m_s)\right\| _{L^2(\delta ,T-\delta )}\\&\quad \leqslant C \left( s^{-3/2} \Vert \rho (B^n-B^m)\Vert _{L^2(Q_T)} + s^{-1/2} e^{-s} \Vert u_0^n-u_0^m\Vert _{L^2(\Omega )} \right. \\&\quad \left. + s^{-3/2} e^{-s} \Vert u_1^n-u_1^m\Vert _{L^{2}(\Omega )} \right) , \end{aligned}$$

while from (19)

$$\begin{aligned} \Vert \rho (y^n_s-y^m_s)_t \Vert _{L^2(Q_T)}&+ s^{-1/2} \Vert \rho _1 (v^n_s-v^m_s)_t \Vert _{L^2(0,T)} \\ \leqslant&\left( s^{-1/2} \Vert \rho (B^n-B^m)\Vert _{L^2(Q_T)} + s^{1/2} e^{-s} \Vert u_0^n-u_0^m\Vert _{L^2(\Omega )} \right. \\&\left. +s^{-1/2}e^{-s} \Vert (u_0^n-u_0^m)_x\Vert _{L^2(\Omega )} + s^{-1/2} e^{-s} \Vert u_1^n-u_1^m\Vert _{L^2(\Omega )}\right) \end{aligned}$$

and from (21).

$$\begin{aligned}&\Vert (y^n_s-y^m_s)_t \Vert _{L^\infty (0,T;L^2(\Omega ))}+\Vert (y^n_s-y^m_s)_x \Vert _{L^\infty (0,T;L^2(\Omega ))}\\&\quad \leqslant C \left( \Vert B^n-B^m\Vert _{L^2(Q_T)} +\Vert u_0^n-u_0^m\Vert _{L^2(\Omega )}\right. \\&\quad \left. + \Vert (u_1^n-u_1^m)_x\Vert _{L^2(\Omega )}+\Vert v^n_s-v^m_s \Vert _{H^1(0,T)}\right) . \end{aligned}$$

Therefore \(v^n_s\rightarrow v_s\) in \(H^1(0,T)\) and \(y^n_s\rightarrow y_s\in \mathcal {C}^0([0,T];H^1(\Omega ))\cap \mathcal {C}^1([0,T];L^2(\Omega ))\) and, passing to the limit in the equation (6) satisfied by \((y^n,v^n)\), we obtain that \((y_s,v_s)\) solves (6). Moreover, passing to the limit in the estimate (19) satisfied by \((y^n_s,v^n_s)\), we deduce that \((y_s,v_s)\) also satisfies (19). Using (10), we easily check that \((y_s,v_s)\) satisfies \(v_s = s\eta ^2\rho _1^{-2}(w_s)_x(1,\cdot )\) and \(y_s=\rho ^{-2}L w_s\) where \(w_s\in P_s\) is the unique solution of (12). The proof of Theorem 7 is complete.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhandari, K., Lemoine, J. & Münch, A. Exact boundary controllability of 1D semilinear wave equations through a constructive approach. Math. Control Signals Syst. 35, 77–123 (2023). https://doi.org/10.1007/s00498-022-00331-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-022-00331-4

Keywords

Mathematics Subject Classification

Navigation