Log in

Spectral simulation of vector random fields with stationary Gaussian increments in d-dimensional Euclidean spaces

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

This paper addresses the problem of simulating multivariate random fields with stationary Gaussian increments in a d-dimensional Euclidean space. To this end, one considers a spectral turning-bands algorithm, in which the simulated field is a mixture of basic random fields made of weighted cosine waves associated with random frequencies and random phases. The weights depend on the spectral density of the direct and cross variogram matrices of the desired random field for the specified frequencies. The algorithm is applied to synthetic examples corresponding to different spatial correlation models. The properties of these models and of the algorithm are discussed, highlighting its computational efficiency, accuracy and versatility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albeverio S, Jorgensen PET, Paolucci AM (2012) On fractional Brownian motion and wavelets. Complex Anal Oper Theory 6:33–63

    Article  Google Scholar 

  • Amblard PO, Coeurjolly JF, Lavancier F, Philippe A (2013) Basic properties of the multivariate fractional Brownian motion. Séminaires et Congrès 28:65–87

    Google Scholar 

  • Arakawa K, Krotkov E (1994) Modeling of natural terrain based on fractal geometry. Syst Comput Jpn 25(11):99–113

    Article  Google Scholar 

  • Arroyo D, Emery X (2015) Simulation of intrinsic random fields of order k with Gaussian generalized increments by Gibbs sampling. Math Geosci 47(8):955–974

    Article  Google Scholar 

  • Asmussen S, Taksar M (1997) Controlled diffusion models for optimal dividend pay-out. Insur Math Econ 20(1):1–15

    Article  Google Scholar 

  • Asmussen S (1998) Stochastic simulation with a view towards stochastic processes. University of Aarhus, Centre for Mathematical Physics and Stochastics

  • Beran J (1994) Statistics for long-memory processes. Chapman and Hall, London

    Google Scholar 

  • Chen CC, Daponte J, Fox M (1989) Fractal feature analysis and classification in medical imaging. IEEE Trans Med Imaging 8:133–142

    Article  CAS  Google Scholar 

  • Chi M, Neal E, Young GK (1973) Practical application of fractional brownian-motion and noise to synthetic hydrology. Water Resour Res 9(6):1523–1533

    Article  Google Scholar 

  • Chilès JP (1995) Quelques méthodes de simulations de fonctions aléatoires intrinsèques. In Cahiers de Géostatistique 5, Paris School of Mines, pp 97–112

  • Chilès JP, Delfiner P (2012) Geostatistics: modeling spatial uncertainty, 2nd edn. John Wiley & Sons, New York

    Book  Google Scholar 

  • Coeurjolly JF (2000) Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study. J Stat Softw 5(7):1–53

    Article  Google Scholar 

  • Collins JJ, De Luca CJ (1994) Upright, correlated random walks: a statistical-biomechanics approach to the human postural control system. Chaos 5(1):57–63

    Article  Google Scholar 

  • Combes JM, Grossmann A, Tchmitchian PH (1989) Wavelets. Springer, New York

    Book  Google Scholar 

  • Comegna A, Coppola A, Comegna V, Sommella A, Vitale CD (2013) Use of a fractional brownian motion model to mimic spatial horizontal variation of soil physical and hydraulic properties displaying a power-law variogram. Proc Environ Sci 19:416–425

    Article  Google Scholar 

  • Dale MRT, Mah M (1998) The use of wavelets for spatial pattern analysis in ecology. J Veg Sci 9:805–814

    Article  Google Scholar 

  • Danudirdjo D, Hirose A (2011) Synthesis of two-dimensional fractional Brownian motion via circulant embedding. In 18th IEEE International Conference on Image Processing, pp 1085–1088

  • Emery X, Arroyo D, Porcu E (2016) An improved spectral turning-bands algorithm for simulating stationary vector Gaussian random fields. Stoch Environ Res Risk Assess, 1–11

  • Emery X (2008) Statistical tests for validating geostatistical simulation algorithms. Comput Geosci 34(11):1610–1620

    Article  Google Scholar 

  • Emery X, Lantuéjoul C (2006) TBSIM: a computer program for conditional simulation of three-dimensional Gaussian random fields via the turning bands method. Comput Geosci 32(10):1615–1628

    Article  Google Scholar 

  • Emery X, Lantuéjoul C (2008) A spectral approach to simulating intrinsic random fields with power and spline generalized covariances. Comput Geosci 12(1):121–132

    Article  Google Scholar 

  • Flandrin P (1989) On the spectrum of fractional Brownian motion. IEEE Trans Inf Theory 35:197–199

    Article  Google Scholar 

  • Flandrin P (1992) Wavelet analysis and synthesis of fractional Brownian motion. IEEE Trans Inf Theory 38(2):910–917

    Article  Google Scholar 

  • Fournier A, Fusell D, Carpenter RL (1982) Computer rendering of stochastic models. Graph Image Process 25(6):371–384

    Google Scholar 

  • Herzfeld UC (1993) Fractals in geosciences: challenges and concerns. Computers in geology: 25 years of progress. Oxford University Press, New York, pp 176–230

    Google Scholar 

  • Horn RA, Johnson CR (1985) Matrix analysis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Huang J, Turcotte DL (1989) Fractal map** of digitized images: application to the topography of Arizona and comparisons with synthetic images. J Geophys Res 94:7491–7495

    Article  Google Scholar 

  • Jensen OG, Todoeschuk JP, Crossley DJ, Gregotski M (1991) Fractal linear models of geophysical processes. In: Schertzer D, Lovejoy S (eds) Non-linear variability in geophysics, scaling and fractals. Kluwer Academic, Dordrecht, pp 227–239

    Chapter  Google Scholar 

  • Lantuéjoul C (1994) Non conditional simulation of stationary isotropic multigaussian random functions. In: Armstrong M, Dowd PA (eds) Geostatistical simulations. Kluwer Academic, Dordrecht, pp 147–177

    Chapter  Google Scholar 

  • Lantuéjoul C (2002) Geostatistical simulation: models and algorithms. Springer, Berlin

    Book  Google Scholar 

  • Malinverno A (1995) Fractals and ocean floor topography: a review and a model. In: Barton CC, La Pointe PR (eds) Fractals in the earth sciences. Springer, New York, pp 107–130

    Chapter  Google Scholar 

  • Mandelbrot BB (1982) The fractal geometry of nature. Freeman, San Francisco

    Google Scholar 

  • Mantoglou A (1987) Digital simulation of multivariate two- and three-dimensional stochastic processes with a spectral turning bands method. Math Geol 19(2):129–149

    Google Scholar 

  • Matheron G (1973) The intrinsic random functions and their applications. Adv Appl Probab 5:439–468

    Article  Google Scholar 

  • Michna Z (1999) On tail probabilities and first passage times for fractional Brownian motion. Math Methods Oper Res 49:335–354

    Google Scholar 

  • Molz FJ, Rajaram H, Lu S (2004) Stochastic fractal-based models of heterogeneity in subsurface hydrology: origins, applications, limitations, and future research questions. Rev Geophys 42(1):1–42

    Article  Google Scholar 

  • Ott WR (1981) A Brownian motion model of pollutant concentration distributions. Department of Statistics and SIAM Institute for Mathematics and Society, Stanford University, p 57

  • Palmer MW (1992) The coexistence of species in fractal landscapes. Am Nat 139:375–397

    Article  Google Scholar 

  • Peitgen HO, Saupe D (1988) The science of fractal images. Springer, New York

    Google Scholar 

  • Pipiras V (2005) Wavelet-based simulation of fractional Brownian motion revisited. Appl Comput Harmonic Anal 19(1):49–60

    Article  Google Scholar 

  • Pozdnyakov V, Meyer T, Wang YB, Yan J (2014) On modeling animal movements using Brownian motion with measurement error. Ecology 95(2):247–253

    Article  Google Scholar 

  • Romanow AL (1984) A Brownian motion model for decision making. J Math Sociol 10:1–28

    Article  Google Scholar 

  • Shinozuka M (1971) Simulation of multivariate and multidimensional random processes. J Acoust Soc Am 49(1B):357–367

    Article  Google Scholar 

  • Smith WT (1994) Investment, uncertainty and price stabilization schemes. J Econ Dyn Control 18:561–579

    Article  Google Scholar 

  • Stein ML (2002) Fast and exact simulation of fractional Brownian surfaces. J Comput Graph Stat 11(3):587–599

    Article  Google Scholar 

  • Turcotte DL (1986) A fractal model for crustal deformation. Tectonophysics 132:261–269

    Article  Google Scholar 

  • Turcotte DL (1997) Fractals and chaos in geology and geophysics, 2nd edn. Cambridge University Press, New York

    Book  Google Scholar 

  • Voss RF (1985) Random fractal forgeries. In Earnshaw R.A. (ed.) Springer, Berlin, 805–835

  • Walker JS (1997) Fourier analysis and wavelet analysis. Notices AMS 44(6):658–670

    Google Scholar 

  • Willinger W, Taqqu MS, Leland WE, Wilson DV (1995) Self-similarity in high-speed packet traffic: analysis and modeling of Ethernet traffic measurements. Stat Sci 10(1):67–85

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the funding by the Chilean Commission for Scientific and Technological Research, through Projects CONICYT / FONDECYT / POSTDOCTORADO / N\(^{\circ }\)3140568, CONICYT / FONDECYT / REGULAR / N\(^{\circ }\)1130085 and CONICYT PIA Anillo ACT1407. Constructive comments from two anonymous reviewers helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Emery.

Appendices

Appendix 1: Covariance and variogram

Consider a scalar intrinsic random field \(Y=\{Y(\mathbf {x}):\mathbf {x}\in \mathbb {R}^d\}\) and denote by \(\gamma (\mathbf {h})\) its variogram for the separation vector \(\mathbf {h}\). For given locations \(\mathbf {x}\), \(\mathbf {x}'\) and \(\mathbf {x}_0\), let us express the covariance between the two increments \(Y(\mathbf {x}) - Y(\mathbf {x}_0)\) and \(Y(\mathbf {x}') - Y(\mathbf {x}_0)\) in terms of the variogram:

$$\begin{aligned} C(\mathbf {x}, \mathbf {x}', \mathbf {x}_0):=\,\,& {} \mathrm {cov}\left\{ Y(\mathbf {x})-Y(\mathbf {x}_0),\, Y(\mathbf {x}')-Y(\mathbf {x}_0)\right\} \\= \,\,& {} \mathrm {cov}\left\{ Y(\mathbf {x})-Y(\mathbf {x}'),\, Y(\mathbf {x}')-Y(\mathbf {x})\right\} + \mathrm {cov}\left\{ Y(\mathbf {x}')-Y(\mathbf {x}_0),\, Y(\mathbf {x}')-Y(\mathbf {x}_0)\right\} \\&- \mathrm {cov}\left\{ Y(\mathbf {x}')-Y(\mathbf {x}_0),\, Y(\mathbf {x})-Y(\mathbf {x}_0)\right\} + \mathrm {cov}\left\{ Y(\mathbf {x})-Y(\mathbf {x}_0),\, Y(\mathbf {x})-Y(\mathbf {x}_0)\right\} \\= & {} -2 \gamma (\mathbf {x}-\mathbf {x}') + 2\gamma (\mathbf {x}' - \mathbf {x}_0) - C(\mathbf {x}, \mathbf {x}',\mathbf {x}_0) + 2\gamma (\mathbf {x}- \mathbf {x}_0). \end{aligned}$$

Accordingly:

$$\begin{aligned} C(\mathbf {x}, \mathbf {x}^{\prime}, \mathbf {x}_0) = \gamma (\mathbf {x}- \mathbf {x}_0) + \gamma (\mathbf {x}^{\prime} - \mathbf {x}_0) - \gamma (\mathbf {x}-\mathbf {x}^{\prime}). \end{aligned}$$

Note that this covariance is unchanged by shifting the locations \(\mathbf {x}\), \(\mathbf {x}'\) and \(\mathbf {x}_0\) by a given vector \(\mathbf {h}\), i.e., \(C(\mathbf {x}, \mathbf {x}^{\prime}, \mathbf {x}_0) = C(\mathbf {x}+\mathbf {h}, \mathbf {x}^{\prime}+\mathbf {h}, \mathbf {x}_0+\mathbf {h})\), showing that the intrinsic random field has second-order stationary increments. Furthermore, by taking \(\mathbf {x}_0 = \mathbf {0}\) and considering that \(Y(\mathbf {0}) = 0\), it ensues:

$$\begin{aligned} \mathrm {cov}\left\{ Y(\mathbf {x}),\, Y(\mathbf {x}^{\prime})\right\} = \gamma (\mathbf {x}) + \gamma (\mathbf {x}^{\prime}) - \gamma (\mathbf {x}-\mathbf {x}^{\prime}), \end{aligned}$$

which shows that the knowledge of the variogram is equivalent to that of the covariance function of the random field.

Appendix 2: Existence conditions for Example 1

The spectral density matrix \(\mathbf {f}(\mathbf {u})\) defined in Eq. (10) is Hermitian because it is a real symmetric matrix. To check that it is positive semi-definite, one therefore only needs to verify that its determinant is non-negative (Horn and Johnson 1985), that is:

$$\begin{aligned} f(\mathbf {u},1,\theta _1)\cdot f(\mathbf {u},1,\theta _2) \ge \rho ^2f^2(\mathbf {u},1,\theta _{12}), \end{aligned}$$

that is:

$$\begin{aligned} \frac{\theta _1\Gamma \left( \frac{\theta _1+d}{2}\right) }{2\Gamma \left( 1-\frac{\theta _1}{2}\right) \pi ^{\theta _1}\Vert \mathbf {u}\Vert ^{\theta _1}}\cdot \frac{\theta _2\Gamma \left( \frac{\theta _2+d}{2}\right) }{2\Gamma \left( 1-\frac{\theta _2}{2}\right) \pi ^{\theta _2}\Vert \mathbf {u}\Vert ^{\theta _2}} \ge \rho ^2\frac{\theta _{12}^2\Gamma ^2\left( \frac{\theta _{12}+d}{2}\right) }{4\Gamma ^2\left( 1-\frac{\theta _{12}}{2}\right) \pi ^{2\theta _{12}}\Vert \mathbf {u}\Vert ^{2\theta _{12}}}. \end{aligned}$$
(13)

From this inequality to hold, one first needs to verify the following:

$$\begin{aligned} \frac{1}{\Vert \mathbf {u}\Vert ^{\theta _1+\theta _2}}\ge \frac{1}{\Vert \mathbf {u}\Vert ^{2\theta _{12}}}. \end{aligned}$$
(14)

If \(2\theta _{12}<\theta _1+\theta _2\), inequality (14) is not satisfied for \(\Vert \mathbf {u}\Vert >1\), whereas if \(2\theta _{12}>\theta _1+\theta _2\), inequality (14) is not satisfied for \(\Vert \mathbf {u}\Vert <1\). Therefore, one must have

$$\begin{aligned} \theta _{12}=\frac{\theta _1+\theta _2}{2}, \end{aligned}$$

in which case Eq. (14) obviously holds \(\forall \mathbf {u}\in \mathbb {R}^d\). Under this condition, one obtains from Eq. (13):

$$\begin{aligned} \rho ^2\le & {} \frac{4\theta _1\theta _2}{(\theta _1+\theta _2)^2}\frac{\Gamma \left( \frac{\theta _1+d}{2}\right) \Gamma \left( \frac{\theta _2+d}{2}\right) \Gamma ^2\left( 1-\frac{\theta _1+\theta _2}{4}\right) }{\Gamma \left( 1-\frac{\theta _1}{2}\right) \Gamma \left( 1-\frac{\theta _2}{2}\right) \Gamma ^2\left( \frac{\theta _1+\theta _2}{4}+\frac{d}{2}\right) }. \end{aligned}$$

Appendix 3: Existence conditions for Example 2

The spectral density matrix \(\mathbf {f}(\mathbf {u})\) defined in Eq. (12) is Hermitian positive semi-definite if its determinant is non-negative, i.e.:

$$\begin{aligned} f(\mathbf {u},b_1,\theta _1)\cdot f(\mathbf {u},b_2,\theta _2) \ge \rho ^2g^2(\mathbf {u},a_{12},\nu _{12}), \end{aligned}$$

that is:

$$\begin{aligned} \varphi (\Vert \mathbf {u}\Vert ):=\frac{(2\pi a_{12})^{2d}\Vert \mathbf {u}\Vert ^{\theta _1+\theta _2+2d}}{\left( 1+(2\pi a_{12})^2\Vert \mathbf {u}\Vert ^2\right) ^{2\nu _{12}+d}}\le \frac{\omega }{\rho ^2}, \end{aligned}$$
(15)

with

$$\begin{aligned} \omega =\frac{\theta _1\theta _2\Gamma \left( \frac{\theta _1+d}{2}\right) \Gamma \left( \frac{\theta _2+d}{2}\right) \Gamma ^2(\nu _{12})}{4\pi ^{\theta _1+\theta _2}b_1^{\theta _1}b_2^{\theta _2}\Gamma \left( 1-\frac{\theta _1}{2}\right) \Gamma \left( 1-\frac{\theta _2}{2}\right) \Gamma ^2\left( \nu _{12}+\frac{d}{2}\right) }. \end{aligned}$$

The map** \(\varphi :\mathbb {R}_+\rightarrow \mathbb {R}\) is unbounded if \(\theta _1+\theta _2>4\nu _{12}\), in which case inequality (15) cannot be satisfied. In the converse \((\theta _1+\theta _2\le 4\nu _{12})\), the maximum of \(\varphi \) is found to be

$$\begin{aligned} \varphi _{\max }=\frac{(\theta _1+\theta _2+2d)^{(\theta _1+\theta _2)/2+d}}{(4\nu _{12}+2d)^{2\nu _{12}+d}}\times \frac{(4\nu _{12}-\theta _1-\theta _2)^{2\nu _{12}-(\theta _1+\theta _2)/2}}{(2\pi a_{12})^{\theta _1+\theta _2}}. \end{aligned}$$

 

Therefore, for the spectral density matrix \(\mathbf {f}(\mathbf {u})\) to be positive semi-definite for all \(\mathbf {u}\in \mathbb {R}^d\), the following necessary and sufficient conditions must be fulfilled:

$$\begin{aligned} \theta _1+\theta _2\le 4\nu _{12} \end{aligned}$$
(16)

and

$$\begin{aligned} |\rho |\le \rho _{\max } = \sqrt{\displaystyle {\frac{\omega }{\varphi _{\max }}}}. \end{aligned}$$
(17)

In the particular case when \(\theta _1+\theta _2=4\nu _{12}\), then \(\varphi _{\max }=(2\pi a_{12})^{-(\theta _1+\theta _2)}\), and the limit value for \(|\rho|\) is given by

$$\begin{aligned} |\rho |\le \frac{\Gamma \left( \frac{\theta _1+\theta _2}{4}\right) }{2\Gamma \left( \frac{\theta _1+\theta _2}{4}+\frac{d}{2}\right) }\sqrt{\left( \frac{2a_{12}}{b_1}\right) ^{\theta _1}\left( \frac{2a_{12}}{b_2}\right) ^{\theta _2}\frac{\theta _1\theta _2\Gamma \left( \frac{\theta _1+d}{2}\right) \Gamma \left( \frac{\theta _2+d}{2}\right) }{\Gamma \left( 1-\frac{\theta _1}{2}\right) \Gamma \left( 1-\frac{\theta _2}{2}\right) }}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arroyo, D., Emery, X. Spectral simulation of vector random fields with stationary Gaussian increments in d-dimensional Euclidean spaces. Stoch Environ Res Risk Assess 31, 1583–1592 (2017). https://doi.org/10.1007/s00477-016-1225-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-016-1225-7

Keywords

Navigation