Log in

Discrete Optimal Transport: Complexity, Geometry and Applications

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

In this article, we introduce a new algorithm for solving discrete optimal transport based on iterative resolutions of local versions of the dual linear program. We show a quantitative link between the complexity of this algorithm and the geometry of the underlying measures in the quadratic Euclidean case. This discrete method is then applied to investigate two optimal transport problems with geometric flavor: the regularity of optimal transport plan on oblate ellipsoids, and Alexandrov’s problem of reconstructing a convex set from its Gaussian measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Note that the practical convergence of the sequence of localized problems is slow, and we only use it from a good initial guess for the maximum of (P3).

References

  1. Agarwal, P., Efrat, A., Sharir, M.: Vertical decomposition of shallow levels in 3-dimensional arrangements and its applications. In: Proceedings of 11th annual symposium on computational geometry (1996)

  2. Aleksandrov, A.D.: Convex Polyhedra. Springer, Berlin (2005)

    Google Scholar 

  3. Aurenhammer, F., Hoffmann, F., Aronov, B.: Minkowski-type theorems and least-squares clustering. Algorithmica 20(1), 61–76 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benamou, J.D., Brenier, Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benamou, J.-D., Froese, B., Oberman, A.: Numerical solution of the second boundary value problem for the Elliptic Monge-Ampère equation. Rapport de recherche (2012)

  6. Bertrand, J.: Prescription of Gauss curvature using optimal mass transport. Preprint (2010)

  7. Bertsekas, D.P., Eckstein, J.: Dual coordinate step methods for linear network flow problems. Math. Program. 42(1), 203–243 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bonnard, B., Caillau, J.B., Rifford, L.: Convexity of injectivity domains on the ellipsoid of revolution: the oblate case. C. R. Math. 348(23), 1315–1318 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brondsted, A., Rockafellar, R.T.: On the subdifferentiability of convex functions. Proc. Am. Math. Soc. 16, 605–611 (1965)

    Article  MathSciNet  Google Scholar 

  10. Burkard, R.E., Dell’Amico, M., Martello, S.: Assignment Problems. Society for Industrial Mathematics, Philadelphia (2009)

    Book  MATH  Google Scholar 

  11. Buš, L., Tvrdík, P.: Towards auction algorithms for large dense assignment problems. Comput. Optim. Appl. 43(3), 411–436 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Caffarelli, L.A., Oliker, V.I.: Weak solutions of one inverse problem in geometric optics. J. Math. Sci. 154(1), 39–49 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cullen, M.J.P., Purser, R.J.: An extended Lagrangian theory of semi-geostrophic frontogenesis. J. Atmos. Sci. 41, 1477–1497 (1984)

    Article  MathSciNet  Google Scholar 

  14. Figalli, A., Rifford, L., Villani, C.: Necessary and sufficient conditions for continuity of optimal transport maps on Riemannian manifolds. Tohoku Math. J. 63(4), 855–876 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gruber, P.M.: Optimum quantization and its applications. Adv. Math. 186(2), 456–497 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms, vol. 1. Springer, Heidelberg (1996)

    Google Scholar 

  17. Kloeckner, B.: Approximation by finitely supported measures. ESAIM Control Optim. Calc. Var. 18, 343–359 (2011)

    Article  MathSciNet  Google Scholar 

  18. Lewis, A.S., Overton, M.L.: Nonsmooth optimization via quasi-Newton methods. Math Program 141(1), 135–163 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, Y., Wang, W., Lévy, B., Sun, F., Yan, D.M., Lu, L., Yang, C.: On centroidal Voronoi tessellation—energy smoothness and fast computation. ACM Trans. Graph. 28(4), 101 (2009)

    Article  Google Scholar 

  20. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  21. Loeper, G., Rapetti, F.: Numerical solution of the Monge–Ampère equation by a Newton’s algorithm. C. R. Math. 340(4), 319–324 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mérigot, Q.: A multiscale approach to optimal transport. Comput. Graph. Forum 30(5), 1583–1592 (2011)

    Article  Google Scholar 

  23. Oliker, V.: Embedding \({\cal {S}}^{n}\) into \({\mathbb{R}}^{n+1}\) with given integral Gauss curvature and optimal mass transport on \({\cal {S}}^{n}\). Adv. Math. 213(2), 600–620 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Oliker, V.I., Prussner, L.D.: On the numerical solution of the equation \(\frac{\partial ^2 z}{\partial x} \frac{\partial ^2 z}{\partial y^2} - \left(\frac{\partial ^2 z}{\partial x\partial y}\right)^2=f\). Numer. Math. 54(3), 271–293 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pogorelov, A.V.: Monge–Ampère Equations of Elliptic Type. Noordhoff, Groningen (1964)

    MATH  Google Scholar 

  26. Shor, Naum Zuselevich: Nondifferentiable Optimization and Polynomial Problems, vol. 24. Springer, Berlin (2013)

    Google Scholar 

  27. Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S.J., Hoppe, H.: Fast exact and approximate geodesics on meshes. ACM Trans. Graph. 24, 553–560 (2005)

    Article  Google Scholar 

  28. Villani, C.: Optimal Transport: Old and New, vol. 338. Springer, Berlin (2009)

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the French ANR, through the Projects TOMMI (ANR-11-BSO1-014-01) and OPTIFORM (ANR-12-BS01-0007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quentin Mérigot.

Additional information

Editor in Charge: Herbert Edelsbrunner

Appendix: Convergence of the Sequence of Linearized Problems

Appendix: Convergence of the Sequence of Linearized Problems

In this section, we prove the global convergence of the sequence of linearized problems considered in Sect. 3.2. We freely reuse notation from this section. The following easy lemma shows that (P2\(_{w}^{\varepsilon }\)) is indeed a localization of (P2).

Lemma 6.1

Any pair of vectors \((v, w+\delta )\) which satisfies the constraints of the localized problem P2\(_{w}^{\varepsilon }\) also satisfy the constraints of (P2).

Proof of Lemma 6.1

Fix a point x in X, and order the points in Y by increasing values of \(w(y) + c(x,y)\), i.e.

$$\begin{aligned} w(y_1) + c(x,y_1) \leqslant w(y_2) + c(x,y_2) \leqslant \cdots \end{aligned}$$

Now, consider a point \(y \in Y\) such that (xy) does not belong to \(\mathrm {G}_\varepsilon (w)\), i.e. such that

$$\begin{aligned} w(y) + c(x,y) > \min _{z\in Y} w(z) + c(x,z) + \varepsilon = c(x,y_1) + w(y_1) + \varepsilon . \end{aligned}$$

Using this inequality, we have

$$\begin{aligned} v(x) - (w(y)+\delta (y)) < v(x) + c(x,y) - (c(x,y_1) + w(y_1) + \varepsilon + \delta (y)). \end{aligned}$$

Since the pair of vectors \((v, w+\delta )\) satisfies the constraints of (P2\(_{w}^{\varepsilon }\)), we know that \(v(x) - w(y_1) - c(x,y_1) \leqslant \delta (y_1)\) and

$$\begin{aligned} v(x) - (w(y)+\delta (y)) \leqslant c(x,y) + \delta (y_1) - \delta (y) - \varepsilon . \end{aligned}$$

Using the fact that \(\delta (y_1)\) and \(\delta (y)\) belong to \([0,\varepsilon ]\), we see that the pair \((v, w+\delta )\) also satisfies all the constraints of (P2). \(\square \)

Proof of Proposition 3.1

By the previous lemma, any maximizer \((v, w+\delta )\) of (P2\(_{w}^{\varepsilon }\)) is admissible for the problem (P2). If for every point y  the value of \(\delta (y)\) belongs to \((0,\varepsilon )\), this pair satisfies the same optimality conditions as optimal vectors of Problem (P2). Thus, w it is a global maximizer of (P3) by concavity. \(\square \)

Proof of Proposition 3.2

Let \(y_0\) be a point in Y, and consider \(E = \{ w: Y\rightarrow \mathbb {R}; w(y_0) = 0 \}. \) A sequence of iterates \((w_i)\) of the algorithm determines a sequence \((v_i)\) in E by setting \(v_i = v_i - w_i(y_0)\). Lemma 6.1 then implies that

$$\begin{aligned} \Phi (v_i) = \Phi (w_{i+1}) \geqslant \max \left\{ \Phi (v);~ v\in B_i \right\} , \end{aligned}$$

where \(B_i\) is the \(\ell ^\infty \) ball \(B_i = v_i+[-\frac{\varepsilon }{2}; \frac{\varepsilon }{2}]^M\) and \(\Phi \) is the function defined in (P3). The restriction of \(\Phi \) to E is concave, piecewise-linear and coercive, and we consider its (compact) set of maximizers \(F_0 = \arg \max _{E} \Phi \). Since the number of facets on which \(\Phi \) is piecewise-linear is finite, there exists a positive number \(\delta \) such that

$$\begin{aligned} \min \{ \left\| \nabla \left. \Phi \right| _{E}(v)\right\| ; v\in E\setminus F_0 \} > \delta . \end{aligned}$$
(5.4)

We now consider the ith iteration of the algorithm, in which we construct \(v_{i+1}\) from \(v_i\). If the ball \(B_i\) intersects \(F_0\), \(v_{i+1}\) is a global maximizer of \(\Phi \) by definition. If not, we can use the lower bound (5.4) on the norm of \(\nabla \Phi \) to show that \(\Phi (w_{i+1})\) has increased by some uniform constant. This can be seen by setting

$$\begin{aligned} \left\{ \begin{aligned}&v(0) = v_i, \\&v'(t) = \frac{\nabla \Phi (v(t))}{\left\| \nabla \Phi (v(t))\right\| } \end{aligned}\right. , \end{aligned}$$

where we assumed \(\Phi \) smooth to simplify the argument. The curve v has unit speed and cannot leave \(B_i\) before time \(T = \varepsilon /2\), giving us

$$\begin{aligned} \Phi (v_{i+1}) = \Phi (v_i) + \int _0^T {\left\| \nabla \Phi (v(t))\right\| } \mathrm{d}t \geqslant \Phi (v_i) + \frac{\varepsilon }{2} \delta . \end{aligned}$$

We get the lower bound \(\Phi (w_{i+1}) \geqslant \Phi (w_0) + (i+1)\frac{\varepsilon }{2}\delta \) at each step before convergence, implying convergence in a finite number of steps. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mérigot, Q., Oudet, É. Discrete Optimal Transport: Complexity, Geometry and Applications. Discrete Comput Geom 55, 263–283 (2016). https://doi.org/10.1007/s00454-016-9757-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-016-9757-7

Keywords

Navigation