Log in

The Grueneberg ganglion: signal transduction and coding in an olfactory and thermosensory organ involved in the detection of alarm pheromones and predator-secreted kairomones

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In numerous mammalian species, the nose harbors several compartments populated by chemosensory cells. Among them, the Grueneberg ganglion (GG) located in the anterior nasal region comprises sensory neurons activated by given substances. In rodents, in which the GG has been best studied, these chemical cues mainly include heterocyclic compounds released by predators or by conspecifics. Since some of these substances evoke fear- or stress-associated responses, the GG is considered as a detector for alerting semiochemicals. In fact, certain behavioral and physiological reactions to alarm pheromones and predator-secreted kairomones are attenuated in the absence of a functional GG. Intriguingly, GG neurons are also stimulated by cool temperatures. Moreover, ambient temperatures modulate olfactory responsiveness in the GG, indicating that cross-talks exist between the transduction pathways mediating chemo- and thermosensory signaling in this organ. In this context, exploring the relevant molecular cascades has demonstrated that some chemosensory transduction elements are also crucial for thermosensory signaling in the GG. Finally, for further processing of sensory information, axons of GG neurons project to the olfactory bulb of the brain where they innervate distinct glomerular structures belonging to the enigmatic necklace glomeruli. In this review, the stimuli activating GG neurons as well as the underlying transduction pathways are summarized. Because these stimuli do not exclusively activate GG neurons but also other sensory cells, the biological relevance of the GG is discussed, with a special focus on the role of the GG in detecting alarm signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

2,3-DMP:

2,3-Dimethylpyrazine

2-EP:

2-Ethylpyrazine

2-PT:

2-Propylthietane

cGMP:

Cyclic guanosine monophosphate

CNG:

Cyclic nucleotide-gated

CNGA3:

Cyclic nucleotide-gated channel A3

GC-G:

Guanylyl cyclase subtype G

GFP:

Green fluorescent protein

GG:

Grueneberg ganglion

GPCR(s):

G protein-coupled receptor(s)

HEK:

Human embryonic kidney

MOE:

Main olfactory epithelium

OB:

Olfactory bulb

OMP:

Olfactory marker protein

PDE:

Phosphodiesterase

PDE2A:

Phosphodiesterase 2A

PTU:

6-Propyl-2-thiouracil

SBT:

2-S-butyl-4,5-dihydrothiazole

STFP:

Social transmission of food preference

TAAR(s):

Trace amine-associated receptor(s)

TAS2R/T2R:

Bitter taste receptor

TMT:

2,5-Dihydro-2,4,5-trimethylthiazoline

VNO:

Vomeronasal organ

References

  • Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ, Zuker CS (2000) A novel family of mammalian taste receptors. Cell 100:693–702

    Article  CAS  PubMed  Google Scholar 

  • Akiyoshi S, Ishii T, Bai Z, Mombaerts P (2018) Subpopulations of vomeronasal sensory neurons with coordinated coexpression of type 2 vomeronasal receptor genes are differentially dependent on Vmn2r1. Eur J Neurosci 47:887–900

    Article  PubMed  PubMed Central  Google Scholar 

  • Allin JT, Banks EM (1971) Effects of temperature on ultrasound production by infant albino rats. Dev Psychobiol 4:149–156

    Article  CAS  PubMed  Google Scholar 

  • Arakawa H, Kelliher KR, Zufall F, Munger SD (2013) The receptor guanylyl cyclase type D (GC-D) ligand uroguanylin promotes the acquisition of food preferences in mice. Chem Senses 38:391–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, Jordt SE, Julius D (2007) The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448:204–208

    Article  CAS  PubMed  Google Scholar 

  • Bean NJ, Galef BG, Mason JR (1988) The effect of carbon disulphide on food consumption by house mice. J Wildl Manage 52:502–507

    Article  CAS  Google Scholar 

  • Behrens M, Foerster S, Staehler F, Raguse JD, Meyerhof W (2007) Gustatory expression pattern of the human TAS2R bitter receptor gene family reveals a heterogenous population of bitter responsive taste receptor cells. J Neurosci 27:12630–12640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blumberg MS, Efimova IV, Alberts JR (1992) Ultrasonic vocalizations by rat pups: the primary importance of ambient temperature and the thermal significance of contact comfort. Dev Psychobiol 25:229–250

    Article  CAS  PubMed  Google Scholar 

  • Bozza TC, Mombaerts P (2001) Olfactory coding: revealing intrinsic representations of odors. Curr Biol 11:R687-690

    Article  CAS  PubMed  Google Scholar 

  • Brechbühl J, de Vallière A, Wood D, Nenniger Tosato M, Broillet MC (2020) The Grueneberg ganglion controls odor-driven food choices in mice under threat. Commun Biol 3:533

    Article  PubMed  PubMed Central  Google Scholar 

  • Brechbühl J, Klaey M, Broillet MC (2008) Grueneberg ganglion cells mediate alarm pheromone detection in mice. Science 321:1092–1095

    Article  PubMed  Google Scholar 

  • Brechbühl J, Klaey M, Moine F, Bovay E, Hurni N, Nenniger-Tosato M, Broillet MC (2014) Morphological and physiological species-dependent characteristics of the rodent Grueneberg ganglion. Front Neuroanat 8:87

    PubMed  PubMed Central  Google Scholar 

  • Brechbühl J, Moine F, Broillet MC (2013b) Mouse Grueneberg ganglion neurons share molecular and functional features with C. elegans amphid neurons. Front Behav Neurosci 7:193

  • Brechbühl J, Moine F, Klaey M, Nenniger-Tosato M, Hurni N, Sporkert F, Giroud C, Broillet MC (2013a) Mouse alarm pheromone shares structural similarity with predator scents. Proc Natl Acad Sci U S A 110:4762–4767

    Article  PubMed  PubMed Central  Google Scholar 

  • Brechbühl J, Moine F, Tosato MN, Sporkert F, Broillet MC (2015) Identification of pyridine analogs as new predator-derived kairomones. Front Neurosci 9:253

    Article  PubMed  PubMed Central  Google Scholar 

  • Brunet LJ, Gold GH, Ngai J (1996) General anosmia caused by a targeted disruption of the mouse olfactory cyclic nucleotide-gated cation channel. Neuron 17:681–693

    Article  CAS  PubMed  Google Scholar 

  • Buck LB (1996) Information coding in the vertebrate olfactory system. Annu Rev Neurosci 19:517–544

    Article  CAS  PubMed  Google Scholar 

  • Buck LB (2000) The molecular architecture of odor and pheromone sensing in mammals. Cell 100:611–618

    Article  CAS  PubMed  Google Scholar 

  • Bumbalo R, Lieber M, Lehmann E, Wolf I, Breer H, Fleischer J (2017b) Attenuated chemosensory responsiveness of the Grueneberg ganglion in mouse pups at warm temperatures. Neuroscience 366:149–161

    Article  CAS  PubMed  Google Scholar 

  • Bumbalo R, Lieber M, Schroeder L, Polat Y, Breer H, Fleischer J (2017a) Grueneberg glomeruli in the olfactory bulb are activated by odorants and cool temperature. Cell Mol Neurobiol 37:729–742

    Article  PubMed  Google Scholar 

  • Chao YC, Chen CC, Lin YC, Breer H, Fleischer J, Yang RB (2015) Receptor guanylyl cyclase-G is a novel thermosensory protein activated by cool temperatures. EMBO J 34:294–306

    Article  CAS  PubMed  Google Scholar 

  • Chao YC, Fleischer J, Yang RB (2018) Guanylyl cyclase-G is an alarm pheromone receptor in mice. EMBO J 37:39–49

    Article  CAS  PubMed  Google Scholar 

  • Chehrehasa F, Jacques A, St John JA, Ekberg JAK (2018) The Grueneberg olfactory organ neuroepithelium recovers after injury. Brain Res 1688:65–72

    Article  CAS  PubMed  Google Scholar 

  • Cockerham RE, Leinders-Zufall T, Munger SD, Zufall F (2009) Functional analysis of the guanylyl cyclase type D signaling system in the olfactory epithelium. Ann N Y Acad Sci 1170:173–176

    Article  CAS  PubMed  Google Scholar 

  • Dai G, Peng C, Liu C, Varnum MD (2013) Two structural components in CNGA3 support regulation of cone CNG channels by phosphoinositides. J Gen Physiol 141:413–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debiec J, Sullivan RM (2014) Intergenerational transmission of emotional trauma through amygdala-dependent mother-to-infant transfer of specific fear. Proc Natl Acad Sci U S A 111:12222–12227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeMaria S, Berke AP, Van Name E, Heravian A, Ferreira T, Ngai J (2013) Role of a ubiquitously expressed receptor in the vertebrate olfactory system. J Neurosci 33:15235–15247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhaka A, Murray AN, Mathur J, Earley TJ, Petrus MJ, Patapoutian A (2007) TRPM8 is required for cold sensation in mice. Neuron 54:371–378

    Article  CAS  PubMed  Google Scholar 

  • Duda T, Sharma RK (2008) ONE-GC membrane guanylate cyclase, a trimodal odorant signal transducer. Biochem Biophys Res Commun 367:440–445

    Article  CAS  PubMed  Google Scholar 

  • Firestein S (2001) How the olfactory system makes sense of scents. Nature 413:211–218

    Article  CAS  PubMed  Google Scholar 

  • Fleischer J (2014) The Grueneberg ganglion: a cool chemodetector. Chemosense 15:3–19

    Google Scholar 

  • Fleischer J, Breer H (2010) The Grueneberg ganglion: a novel sensory system in the nose. Histol Histopathol 25:909–915

    PubMed  Google Scholar 

  • Fleischer J, Hass N, Schwarzenbacher K, Besser S, Breer H (2006a) A novel population of neuronal cells expressing the olfactory marker protein (OMP) in the anterior/dorsal region of the nasal cavity. Histochem Cell Biol 125:337–349

    Article  CAS  PubMed  Google Scholar 

  • Fleischer J, Mamasuew K, Breer H (2009) Expression of cGMP signaling elements in the Grueneberg ganglion. Histochem Cell Biol 131:75–88

    Article  CAS  PubMed  Google Scholar 

  • Fleischer J, Schwarzenbacher K, Besser S, Hass N, Breer H (2006b) Olfactory receptors and signalling elements in the Grueneberg ganglion. J Neurochem 98:543–554

    Article  CAS  PubMed  Google Scholar 

  • Fleischer J, Schwarzenbacher K, Breer H (2007) Expression of trace amine-associated receptors in the Grueneberg ganglion. Chem Senses 32:623–631

    Article  CAS  PubMed  Google Scholar 

  • Fuss SH, Omura M, Mombaerts P (2005) The Grueneberg ganglion of the mouse projects axons to glomeruli in the olfactory bulb. Eur J Neurosci 22:2649–2654

    Article  PubMed  Google Scholar 

  • Galef BG (2012) A case study in behavioral analysis, synthesis and attention to detail: social learning of food preferences. Behav Brain Res 231:266–271

    Article  PubMed  Google Scholar 

  • Galef BG, Mason JR, Preti G, Bean NJ (1988) Carbon disulfide: a semiochemical mediating socially-induced diet choice in rats. Physiol Behav 42:119–124

    Article  CAS  PubMed  Google Scholar 

  • Gattermann R, Johnston RE, Yigit N, Fritzsche P, Larimer S, Ozkurt S, Neumann K, Song Z, Colak E, Johnston J, McPhee ME (2008) Golden hamsters are nocturnal in captivity but diurnal in nature. Biol Lett 4:253–255

    Article  PubMed  PubMed Central  Google Scholar 

  • Grüneberg H (1973) A ganglion probably belonging to the N. terminalis system in the nasal mucosa of the mouse. Z Anat Entwicklungsgesch 140:39–52

    Article  PubMed  Google Scholar 

  • Hanke W, Mamasuew K, Biel M, Yang RB, Fleischer J (2013) Odorant-evoked electrical responses in Grueneberg ganglion neurons rely on cGMP-associated signaling proteins. Neurosci Lett 539:38–42

    Article  CAS  PubMed  Google Scholar 

  • Jemiolo B, Andreolini F, **e TM, Wiesler D, Novotny M (1989) Puberty-affecting synthetic analogs of urinary chemosignals in the house mouse, Mus domesticus. Physiol Behav 46:293–298

    Article  CAS  PubMed  Google Scholar 

  • Juilfs DM, Fülle HJ, Zhao AZ, Houslay MD, Garbers DL, Beavo JA (1997) A subset of olfactory neurons that selectively express cGMP-stimulated phosphodiesterase (PDE2) and guanylyl cyclase-D define a unique olfactory signal transduction pathway. Proc Natl Acad Sci U S A 94:3388–3395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaupp UB, Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82:769–824

    Article  CAS  PubMed  Google Scholar 

  • Kelliher KR, Munger SD (2015) Chemostimuli for guanylyl cyclase-D-expressing olfactory sensory neurons promote the acquisition of preferences for foods adulterated with the rodenticide warfarin. Front Neurosci 9:262

    Article  PubMed  PubMed Central  Google Scholar 

  • Kobayakawa K, Kobayakawa R, Matsumoto H, Oka Y, Imai T, Ikawa M, Okabe M, Ikeda T, Itohara S, Kikusui T, Mori K, Sakano H (2007) Innate versus learned odour processing in the mouse olfactory bulb. Nature 450:503–508

    Article  CAS  PubMed  Google Scholar 

  • Koos DS, Fraser SE (2005) The Grueneberg ganglion projects to the olfactory bulb. NeuroReport 16:1929–1932

    Article  PubMed  Google Scholar 

  • Kuhn M (2016) Molecular physiology of membrane guanylyl cyclase receptors. Physiol Rev 96:751–804

    Article  CAS  PubMed  Google Scholar 

  • Leinders-Zufall T, Cockerham RE, Michalakis S, Biel M, Garbers DL, Reed RR, Zufall F, Munger SD (2007) Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium. Proc Natl Acad Sci U S A 104:14507–14512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liberles SD (2015) Trace amine-associated receptors: ligands, neural circuits, and behaviors. Curr Opin Neurobiol 34:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liberles SD, Buck LB (2006) A second class of chemosensory receptors in the olfactory epithelium. Nature 442:645–650

    Article  CAS  PubMed  Google Scholar 

  • Liu CY, Fraser SE, Koos DS (2009) Grueneberg ganglion olfactory subsystem employs a cGMP signaling pathway. J Comp Neurol 516:36–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S, Chepenik KP, Waldman SA (2000) Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev 52:375–414

    CAS  PubMed  Google Scholar 

  • Maingret F, Lauritzen I, Patel AJ, Heurteaux C, Reyes R, Lesage F, Lazdunski M, Honoré E (2000) TREK-1 is a heat-activated background K(+) channel. EMBO J 19:2483–2491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mamasuew K, Breer H, Fleischer J (2008) Grueneberg ganglion neurons respond to cool ambient temperatures. Eur J Neurosci 28:1775–1785

    Article  PubMed  Google Scholar 

  • Mamasuew K, Hofmann N, Breer H, Fleischer J (2011a) Grueneberg ganglion neurons are activated by a defined set of odorants. Chem Senses 36:271–282

    Article  CAS  PubMed  Google Scholar 

  • Mamasuew K, Hofmann N, Kretzschmann V, Biel M, Yang RB, Breer H, Fleischer J (2011b) Chemo- and thermosensory responsiveness of Grueneberg ganglion neurons relies on cyclic guanosine monophosphate signaling elements. Neurosignals 19:198–209

    Article  CAS  PubMed  Google Scholar 

  • Mamasuew K, Michalakis S, Breer H, Biel M, Fleischer J (2010) The cyclic nucleotide-gated ion channel CNGA3 contributes to coolness-induced responses of Grueneberg ganglion neurons. Cell Mol Life Sci 67:1859–1869

    Article  CAS  PubMed  Google Scholar 

  • Martini S, Silvotti L, Shirazi A, Ryba NJ, Tirindelli R (2001) Co-expression of putative pheromone receptors in the sensory neurons of the vomeronasal organ. J Neurosci 21:843–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuo T, Rossier DA, Kan C, Rodriguez I (2012) The wiring of Grueneberg ganglion axons is dependent on neuropilin 1. Development 139:2783–2791

    Article  CAS  PubMed  Google Scholar 

  • Menco BP (1997) Ultrastructural aspects of olfactory signaling. Chem Senses 22:295–311

    Article  CAS  PubMed  Google Scholar 

  • Menco BP, Cunningham AM, Qasba P, Levy N, Reed RR (1997) Putative odour receptors localize in cilia of olfactory receptor cells in rat and mouse: a freeze-substitution ultrastructural study. J Neurocytol 26:691–706

    Article  CAS  PubMed  Google Scholar 

  • Meyer MR, Angele A, Kremmer E, Kaupp UB, Muller F (2000) A cGMP-signaling pathway in a subset of olfactory sensory neurons. Proc Natl Acad Sci U S A 97:10595–10600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moine F, Brechbühl J, Nenniger Tosato M, Beaumann M, Broillet MC (2018) Alarm pheromone and kairomone detection via bitter taste receptors in the mouse Grueneberg ganglion. BMC Biol 16:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Mombaerts P (2004a) Genes and ligands for odorant, vomeronasal and taste receptors. Nat Rev Neurosci 5:263–278

    Article  CAS  PubMed  Google Scholar 

  • Mombaerts P (2004b) Odorant receptor gene choice in olfactory sensory neurons: the one receptor-one neuron hypothesis revisited. Curr Opin Neurobiol 14:31–36

    Article  CAS  PubMed  Google Scholar 

  • Mori K, Nagao H, Yoshihara Y (1999) The olfactory bulb: coding and processing of odor molecule information. Science 286:711–715

    Article  CAS  PubMed  Google Scholar 

  • Munger SD, Leinders-Zufall T, McDougall LM, Cockerham RE, Schmid A, Wandernoth P, Wennemuth G, Biel M, Zufall F, Kelliher KR (2010) An olfactory subsystem that detects carbon disulfide and mediates food-related social learning. Curr Biol 20:1438–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okon EE (1971) The temperature relations of vocalization in infant Golden hamsters and Wistar rats. J Zool 164:227–237

    Article  Google Scholar 

  • Osada K, Kurihara K, Izumi H, Kashiwayanagi M (2013) Pyrazine analogues are active components of wolf urine that induce avoidance and freezing behaviours in mice. PLoS ONE 8:e61753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oswalt GL, Meier GW (1975) Olfactory, thermal, and tactual influences on infantile ultrasonic vocalization in rats. Dev Psychobiol 8:129–135

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Gómez A, Bleymehl K, Stein B, Pyrski M, Birnbaumer L, Munger SD, Leinders-Zufall T, Zufall F, Chamero P (2015) Innate predator odor aversion driven by parallel olfactory subsystems that converge in the ventromedial hypothalamus. Curr Biol 25:1340–1346

    Article  PubMed  PubMed Central  Google Scholar 

  • Roppolo D, Ribaud V, Jungo VP, Lüscher C, Rodriguez I (2006) Projection of the Grüneberg ganglion to the mouse olfactory bulb. Eur J Neurosci 23:2887–2894

    Article  PubMed  Google Scholar 

  • Schmid A, Pyrski M, Biel M, Leinders-Zufall T, Zufall F (2010) Grueneberg ganglion neurons are finely tuned cold sensors. J Neurosci 30:7563–7568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sievert T, Laska M (2016) Behavioral responses of CD-1 mice to six predator odor components. Chem Senses 41:399–406

    Article  CAS  PubMed  Google Scholar 

  • Stebe S, Schellig K, Lesage F, Breer H, Fleischer J (2014) The thermosensitive potassium channel TREK-1 contributes to coolness-evoked responses of Grueneberg ganglion neurons. Cell Mol Neurobiol 34:113–122

    Article  CAS  PubMed  Google Scholar 

  • Storan MJ, Key B (2006) Septal organ of Grüneberg is part of the olfactory system. J Comp Neurol 494:834–844

    Article  PubMed  Google Scholar 

  • Strotmann J, Levai O, Fleischer J, Schwarzenbacher K, Breer H (2004) Olfactory receptor proteins in axonal processes of chemosensory neurons. J Neurosci 24:7754–7761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szentgyörgyi H, Kapusta J, Marchlewska-Koj A (2008) Ultrasonic calls of bank vole pups isolated and exposed to cold or to nest odor. Physiol Behav 93:296–303

    Article  PubMed  Google Scholar 

  • Tachibana T, Fujiwara N, Nawa T (1990) The ultrastructure of the ganglionated nerve plexus in the nasal vestibular mucosa of the musk shrew (Suncus murinus, insectivora). Arch Histol Cytol 53:147–156

    Article  CAS  PubMed  Google Scholar 

  • Thompson DK, Garbers DL (1995) Dominant negative mutations of the guanylyl cyclase-A receptor. Extracellular domain deletion and catalytic domain point mutations. J Biol Chem 270:425–430

    Article  CAS  PubMed  Google Scholar 

  • Vernet-Maury E, Polak EH, Demael A (1984) Structure-activity relationship of stress-inducing odorants in the rat. J Chem Ecol 10:1007–1018

    Article  CAS  PubMed  Google Scholar 

  • Wallace KJ, Rosen JB (2000) Predator odor as an unconditioned fear stimulus in rats: elicitation of freezing by trimethylthiazoline, a component of fox feces. Behav Neurosci 114:912–922

    Article  CAS  PubMed  Google Scholar 

  • Walz A, Feinstein P, Khan M, Mombaerts P (2007) Axonal wiring of guanylate cyclase-D-expressing olfactory neurons is dependent on neuropilin 2 and semaphorin 3F. Development 134:4063–4072

    Article  CAS  PubMed  Google Scholar 

  • Wilson EM, Chinkers M (1995) Identification of sequences mediating guanylyl cyclase dimerization. Biochemistry 34:4696–4701

    Article  CAS  PubMed  Google Scholar 

  • Wong ST, Trinh K, Hacker B, Chan GC, Lowe G, Gaggar A, **a Z, Gold GH, Storm DR (2000) Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice. Neuron 27:487–497

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Hatakeyama T, Taniguchi K (2009) Immunohistochemical colocalization of TREK-1, TREK-2 and TRAAK with TRP channels in the trigeminal ganglion cells. Neurosci Lett 454:129–133

    Article  CAS  PubMed  Google Scholar 

  • Zhang JX, Soini HA, Bruce KE, Wiesler D, Woodley SK, Baum MJ, Novotny MV (2005) Putative chemosignals of the ferret (Mustela furo) associated with individual and gender recognition. Chem Senses 30:727–737

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Zagotta WN (2004) Stoichiometry and assembly of olfactory cyclic nucleotide-gated channels. Neuron 42:411–421

    Article  CAS  PubMed  Google Scholar 

  • Zou DJ, Chesler A, Firestein S (2009) How the olfactory bulb got its glomeruli: a just so story? Nat Rev Neurosci 10:611–618

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author is indebted to Heinz Breer and Jürgen Krieger for generous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joerg Fleischer.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Ethical approval

This review does not contain any previously unpublished studies with human participants or animals.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fleischer, J. The Grueneberg ganglion: signal transduction and coding in an olfactory and thermosensory organ involved in the detection of alarm pheromones and predator-secreted kairomones. Cell Tissue Res 383, 535–548 (2021). https://doi.org/10.1007/s00441-020-03380-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-020-03380-w

Keywords

Navigation