Log in

Local TrkB signaling: themes in development and neural plasticity

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The sensitivity of the nervous system to receive and respond to events, both internal and in the environment, depends on the ability of neural structures to remodel in response to experience (Kandel 2001; Mayford et al. 2012)⁠. Neural plasticity depends on rapid, tightly controlled rearrangements of cytoskeleton, membrane morphology, and protein content. Neurons regulate plasticity across orders of structural organization, from changes in molecular machinery that calls forth the synaptic alterations that underlie learning and memory, to events that evoke mesoscale alterations in neurite architecture, and to the birth and death of neurons. We address the concept that the events responsible for such diverse modification of neurons originate from local changes in signaling and that understanding the underlying mechanisms requires an appreciation of the nature of constraints placed upon spatial and temporal activity. During development and in the adult, both the remodeling of specific subcellular structures and induction of synaptic plasticity require local control and regulation of signaling, including those initiated by activation of surface receptors (Reichardt 2006). As an example, the receptor tyrosine kinase TrkB, activated by its ligand brain-derived neurotrophic factor (BDNF), has emerged as a potent modulator of plasticity in both development and adulthood, from neurite pruning and branching events during PNS and CNS development, to learning and memory. Here, we review the mechanisms by which TrkB signaling engages in local remodeling to support neural plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allen SJ, Wilcock GK, Dawbarn D (1999) Profound and selective loss of catalytic TrkB immunoreactivity in Alzheimer’s disease. Biochem Biophys Res Commun 264:648–651

    CAS  PubMed  Google Scholar 

  • Almeida RD, Manadas BJ, Melo CV, Gomes JR, Mendes CS, Grãos MM, Carvalho RF, Carvalho AP, Duarte CB (2005) Neuroprotection by BDNF against glutamateinduced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death Differ 12:1329–1343

    CAS  PubMed  Google Scholar 

  • Aloyz R, Fawcett JP, Kaplan DR, Murphy RA, Miller FD (1999) Activitydependent activation of TrkB neurotrophin receptors in the adult CNS. Learn Mem 6:216–231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Altar CA et al (1997) Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature 389(6653):856–860

    CAS  PubMed  Google Scholar 

  • Amaral MD, Pozzo-Miller L (2007) TRPC3 channels are necessary for brain-derived neurotrophic factor to activate a nonselective cationic current and to induce dendritic spine formation. J Neurosci 27:5179–5189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andres-Alonso M, Ammar MR, Butnaru I, Gomes GM, Acuña Sanhueza G, Raman R, Yuanxiang PA, Borgmeyer M, Lopez-Rojas J, Raza SA et al (2019) SIPA1L2 controls trafficking and local signaling of TrkB-containing amphisomes at presynaptic terminals. Nat Commun 10:1–17

    CAS  Google Scholar 

  • Andreska T, Lüningschrör P, Sendtner M (2020) Regulation of TrkB cell surface expression—a mechanism for modulation of neuronal responsiveness to brain-derived neurotrophic factor. Cell Tissue Res. https://doi.org/10.1007/s00441-020-03224-7

  • Aram L, Yacobi-Sharon K, Arama E (2017) CDPs: caspase-dependent non-lethal cellular processes. Cell Death Differ 24:1307–1310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atwal JK, Massie B, Miller FD, Kaplan DR (2000) The TrkB-Shc site signals neuronal survival and local axon growth via MEK and PI3-Kinase. Neuron 27:265–277

    CAS  PubMed  Google Scholar 

  • Barbacid M (1994) The Trk family of neurotrophin receptors. J Neurobiol 25:1386–1403

    CAS  PubMed  Google Scholar 

  • Beach LQ, Tang YP, Kerver H, Wade J (2016) Inhibition of TrkB limits development of the zebra finch song system. Brain Res 1642:467–477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett EJ et al (2007) Global changes to the ubiquitin system in Huntington’s disease. Nature 448(7154):704–708

    CAS  PubMed  Google Scholar 

  • Bliss TVP, Lømo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bothwell M (2014) NGF, BDNF, NT3, and NT4. Springer, Berlin, Heidelberg, pp 3–15

    Google Scholar 

  • Boyce M, Degterev A, Yuan J (2004) Caspases: an ancient cellular sword of Damocles. Cell Death Differ 11:29–37

    CAS  PubMed  Google Scholar 

  • Bramham CR, Wells DG (2007) Dendritic mRNA: transport, translation and function. Nat Rev Neurosci 8:776–789

    CAS  PubMed  Google Scholar 

  • Browne SE (2008) Mitochondria and Huntington’s disease pathogenesis: insight from genetic and chemical models. Ann N Y Acad Sci 1147:358–382

    CAS  PubMed  Google Scholar 

  • Cabelli RJ, Allendoerfer KL, Radeke MJ, Welcher AA, Feinstein SC, Shatz CJ (1996) Changing patterns of expression and subcellular localization of TrkB in the develo** visual system. J Neurosci 16:7965–7980

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campenot RB (1977) Local control of neurite development by nerve growth factor. Proc Natl Acad Sci U S A 74:4516–4519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Canals JM et al (2004) Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington’s disease. J Neurosci 24(35):7727–7739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Causing CG, Gloster A, Aloyz R, Bamji SX, Chang E, Fawcett J, Kuchel G, Miller FD (1997) Synaptic innervation density is regulated by neuron-derived BDNF. Neuron 18:257–267

    CAS  PubMed  Google Scholar 

  • Chen X, Agate RJ, Itoh Y, Arnold AP (2005) Sexually dimorphic expression of trkB, a Z-linked gene, in early posthatch zebra finch brain. Proc Natl Acad Sci U S A 102:7730–7735

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SD, Wu CL, Hwang WC, Yang DI (2017) More insight into BDNF against neurodegeneration: anti-apoptosis, anti-oxidation, and suppression of autophagy. Int J Mol Sci 18(3):545

    PubMed Central  Google Scholar 

  • Cheng PL, Song AH, Wong YH, Wang S, Zhang X, Poo MM (2011) Selfamplifying autocrine actions of BDNF in axon development. Proc Natl Acad Sci U S A 108:18430–18435

    CAS  PubMed  PubMed Central  Google Scholar 

  • D’Amelio M, Cavallucci V, Cecconi F (2010) Neuronal caspase-3 signaling: not only cell death. Cell Death Differ 17:1104–1114

    PubMed  Google Scholar 

  • De Vincenti AP, Ríos AS, Paratcha G, Ledda F (2019) Mechanisms that modulate and diversify BDNF functions: implications for hippocampal synaptic plasticity. Front Cell Neurosci 13:135

    PubMed  PubMed Central  Google Scholar 

  • Dewson G, Kluck RM (2009) Mechanisms by which Bak and Bax permeabilise mitochondria during apoptosis. J Cell Sci 122(16):2801–2808

    CAS  PubMed  PubMed Central  Google Scholar 

  • Devi L, Ohno M (2015) TrkB reduction exacerbates Alzheimer’s disease-like signaling aberrations and memory deficits without affecting β-amyloidosis in 5XFAD mice. Transl Psychiatry 5:e562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dieni S, Matsumoto T, Dekkers M, Rauskolb S, Ionescu MS, Deogracias R, Gundelfinger ED, Kojima M, Nestel S, Frotscher M et al (2012) BDNF and its propeptide are stored in presynaptic dense core vesicles in brain neurons. J Cell Biol 196:775–788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dittrich F, ter Maat A, Jansen RF, Pieneman A, Hertel M, Frankl-Vilches C, Gahr M (2013) Maximized song learning of juvenile male zebra finches following BDNF expression in the HVC. Eur J Neurosci 38:3338–3344

    PubMed  Google Scholar 

  • Drake CT, Milner TA, Patterson SL (1999) Ultrastructural localization of full-length trkB immunoreactivity in rat hippocampus suggests multiple roles in modulating activity dependent synaptic plasticity. J Neurosci 19(18):8009–8026

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dufner A, Thomas G (1999) Ribosomal S6 kinase signaling and the control of translation. Exp Cell Res 253:100–109

    CAS  PubMed  Google Scholar 

  • Edelmann E, Cepeda-Prado E, Brigadski T, Leßmann Correspondence V (2015) Theta burst firing recruits bdnf release and signaling in postsynaptic CA1 neurons in spike-timing-dependent LTP. Neuron 86:1041–1054

    CAS  PubMed  Google Scholar 

  • Elmariah SB, Crumling MA, Parsons TD, Balice-Gordon RJ (2004) Postsynaptic TrkB-mediated signaling modulates excitatory and inhibitory neurotransmitter receptor clustering at hippocampal synapses. J Neurosci 24:2380–2393

    CAS  PubMed  PubMed Central  Google Scholar 

  • Estrada Sánchez AM, Mejía-Toiber J, Massieu L (2008) Excitotoxic neuronal death and the pathogenesis of huntington’s disease. Arch Med Res 39:265–276

    PubMed  Google Scholar 

  • Gauthier LR, Charrin BC, Borrell-Pagès M, Dompierre JP, Rangone H, Cordelières FP, De Mey J, MacDonald ME, Leßmann V, Humbert S et al (2004) Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118:127–138

    CAS  PubMed  Google Scholar 

  • Gibon J, Unsain N, Gamache K, Thomas RA, De Leon A, Johnstone A, Nader K, Séguéla P, Barker PA (2016) The X-linked inhibitor of apoptosis regulates long-term depression and learning rate. FASEB J 30:3083–3090

    CAS  PubMed  Google Scholar 

  • Gilman CP, Mattson MP (2002) Do apoptotic mechanisms regulate synaptic plasticity and growth-cone motility? NeuroMolecular Med 2:197–214

    CAS  PubMed  Google Scholar 

  • Ginés S et al (2006) Reduced expression of the TrkB receptor in Huntington’s disease mouse models and in human brain. Eur J Neurosci 23(3):649–658

    PubMed  Google Scholar 

  • Graham DL, Krishnan V, Larson EB, Graham A, Edwards S, Bachtell RK, Simmons D, Gent LM, Berton O, Bolanos CA et al (2009) Tropomyosin-related kinase B in the mesolimbic dopamine system: region-specific effects on cocaine reward. Biol Psychiatry 65:696–701

    CAS  PubMed  Google Scholar 

  • Harward SC, Hedrick NG, Hall CE, Parra-Bueno P, Milner TA, Pan E, Laviv T, Hempstead BL, Yasuda R, McNamara JO (2016) Autocrine BDNF-TrkB signalling within a single dendritic spine. Nature 538:99–103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howe CL, Valletta JS, Rusnak AS, Mobley WC (2001) NGF signaling from clathrin-coated vesicles: Evidence that signaling endosomes serve as a platform for the Ras-MAPK pathway. Neuron 32:801–814

    CAS  PubMed  Google Scholar 

  • Huesmann GR, Clayton DF (2006) Dynamic role of postsynaptic caspase-3 and BIRC4 in zebra finch song-response habituation. Neuron 52:1061–1072

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ichim G, Lopez J, Ahmed SU, Muthalagu N, Giampazolias E, Delgado ME, Haller M, Riley JS, Mason SM, Athineos D, Parsons MJ, van de Kooij B, Bouchier-Hayes L, Chalmers AJ, Rooswinkel RW, Oberst A, Blyth K, Rehm M, Murphy DJ, Tait SWG (2015) Limited mitochondrial Permeabilization causes DNA damage and genomic instability in the absence of cell death. Mol Cell 57(5):860–872

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kandel ER (2001) The molecular biology of memory storage: A dialogue between genes and synapses. Science (80-. ) 294:1030–1038

    CAS  Google Scholar 

  • Kandel ER (2012) The molecular biology of memory: CAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol Brain 5:14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang H, Schuman EM (2000) Intracellular Ca2+ signaling is required for neurotrophininduced potentiation in the adult rat hippocampus. Neurosci Lett 282:141–144

    CAS  PubMed  Google Scholar 

  • Kaplan DR, Miller FD (2000) Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol 10:381–391

    CAS  PubMed  Google Scholar 

  • Kirkland RA, Franklin JL (2003) Bax, reactive oxygen, and cytochrome c release in neuronal apoptosis. Antioxid Redox Signal 5:589–596

    CAS  PubMed  Google Scholar 

  • Kovalchuk Y, Hanse E, Kafitz KW, Konnerth A (2002) Postsynaptic induction of BDNF-mediated long-term potentiation. Science (80- ) 295:1729–1734

    CAS  Google Scholar 

  • Leal G, Comprido D, Duarte CB (2014) BDNF-induced local protein synthesis and synaptic plasticity. Neuropharmacology 76:639–656

    CAS  PubMed  Google Scholar 

  • Li Z, Sheng M (2012) Caspases in synaptic plasticity. Mol Brain 5:15

    PubMed  PubMed Central  Google Scholar 

  • Li Y, ** YC, Cul K, Li N, Zheng ZY, Wang YZ, Yuan XB (2005) Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature 434:894–898

    CAS  PubMed  Google Scholar 

  • Li Z, Jo J, Jia J-M, Lo S-C, Whitcomb DJ, Jiao S, Cho K, Sheng M (2010) Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell 141:859–871

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin P-Y, Kavalali ET, Monteggia Correspondence LM (2018) Genetic dissection of presynaptic and postsynaptic BDNF-TrkB signaling in synaptic efficacy of CA3-CA1 Synapses. Cell Rep 24:1550–1561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lisman J, Yasuda R, Raghavachari S (2012) Mechanisms of CaMKII action in longterm potentiation. Nat Rev Neurosci 13:169–182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Rutlin M, Huang S, Barrick CA, Wang F, Jones KR, Tessarollo L, Ginty DD (2012) Sexually dimorphic BDNF signaling directs sensory innervation of the mammary gland. Science (80-. ) 338:1357–1360

    CAS  Google Scholar 

  • Lu B, Nagappan G, Lu Y (2014) BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb Exp Pharmacol 220:223–250

    CAS  PubMed  Google Scholar 

  • Lucas EK, Jegarl A, Clem RL (2014) Mice lacking TrkB in parvalbumin-positive cells exhibit sexually dimorphic behavioral phenotypes. Behav Brain Res 274:219–225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marambaud P, Dreses-Werringloer U, Vingtdeux V (2009) Calcium signaling in neurodegeneration. Mol Neurodegener 4:20

    PubMed  PubMed Central  Google Scholar 

  • Mayford M, Baranes D, Podsypanina K, Kandel ER (1996) The 3′-untranslated region of CaMKIIα is a cis-acting signal for the localization and translation of mRNA in dendrites. Proc Natl Acad Sci U S A 93:13250–13255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mayford M, Siegelbaum SA, Kandel ER (2012) Synapses and memory storage. Cold Spring Harb Perspect Biol 4:1–18

    Google Scholar 

  • Minichiello L, Calella AM, Medina DL, Bonhoeffer T, Klein R, Korte M (2002) Mechanism of TrkB-mediated hippocampal long-term potentiation. Neuron 36:121–137

    CAS  PubMed  Google Scholar 

  • Moya-Alvarado G, Gonzalez A, Stuardo N, Bronfman FC (2018) Brain-derived neurotrophic factor (BDNF) regulates Rab5-positive early endosomes in hippocampal neurons to induce dendritic branching. Front Cell Neurosci 12:493

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakata H, Nakamura S (2007) Brain-derived neurotrophic factor regulates AMPA receptor trafficking to post-synaptic densities via IP3R and TRPC calcium signaling. FEBS Lett 581:2047–2054

    CAS  PubMed  Google Scholar 

  • Néant-Fery M, Pérès E, Nasrallah C, Kessner M, Gribaudo S, Greer C, Didier A, Trembleau A, Caillé I (2012) A role for dendritic translation of CAMKIIα mRNA in olfactory plasticity. PLoS One 7(6):e40133

    PubMed  PubMed Central  Google Scholar 

  • Panja D, Bramham CR (2014) BDNF mechanisms in late LTP formation: a synthesis and breakdown. Neuropharmacology 76:664–676

    CAS  PubMed  Google Scholar 

  • Peña-Blanco A, García-Sáez AJ (2017) Bax, Bak and beyond — mitochondrial performance in apoptosis. FEBS J 285(3):416–431

    PubMed  Google Scholar 

  • Pérez-Navarro E, Gavaldà N, Gratacòs E, Alberch J (2005) Brain-derived neurotrophic factor prevents changes in Bcl-2 family members and caspase-3 activation induced by excitotoxicity in the striatum. J Neurochem 92:678–691

    PubMed  Google Scholar 

  • Proud CG (1996) p70 S6 Kinase: An enigma with variations. Trends Biochem Sci 21:181–185

    CAS  PubMed  Google Scholar 

  • Pullen N, Thomas G (1997) The modular phosphorylation and activation of p70(s6k). In FEBS Letters, (FEBS Lett), pp. 78–82.

  • Putney JW, Tomita T (2012) Phospholipase C signaling and calcium influx. Adv Biol Regul 52:152–164

    CAS  PubMed  Google Scholar 

  • Qi D, Ouyang C, Wang Y, Zhang S, Ma X, Song YJ, Yu HL, Tang J, Fu W, Sheng L et al (2014) HO-1 attenuates hippocampal neurons injury via the activation of BDNF-TrkB-PI3K/Akt signaling pathway in stroke. Brain Res 1577:69–76

    CAS  PubMed  Google Scholar 

  • Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 361:1545–1564

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ross CA, Tabrizi SJ (2011) Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 10:83–98

    CAS  PubMed  Google Scholar 

  • Simon DJ, Weimer RM, McLaughlin T, Kallop D, Stanger K, Yang J, O'Leary DDM, Hannoush RN, Tessier-Lavigne M (2012) A caspase Cascade regulating developmental axon degeneration. J Neurosci 32(49):17540–17553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song HJ, Ming GL, Poo MM (1997) cAMP-induced switching in turning direction of nerve growth cones. Nature 388:275–279

    CAS  PubMed  Google Scholar 

  • Song M, Martinowich K, Lee FS (2017) BDNF at the synapse: why location matters. Mol Psychiatry 22:1370–1375

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steward O, Levy WB (1982) Preferential localization of polyribosomes under the base of dendritic spines in granule cells of the dentate gyrus. J Neurosci 2:284–291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki S, Numakawa T, Shimazu K, Koshimizu H, Hara T, Hatanaka H, Mei L, Lu B, Kojima M (2004) BDNF-induced recruitment of TrkB receptor into neuronal lipid rafts: Roles in synaptic modulation. J Cell Biol 167:1205–1215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamariz E, Varela-Echavarría A (2015) The discovery of the growth cone and its influence on the study of axon guidance. Front Neuroanat 9:51

    PubMed  PubMed Central  Google Scholar 

  • Tanaka JI, Horiike Y, Matsuzaki M, Miyazaki T, Ellis-Davies GCR, Kasai H (2008) Protein synthesis and neurotrophin-dependent structural plasticity of single dendritic spines. Science (80) 319:1683–1687

    CAS  Google Scholar 

  • Taylor AM, Blurton-Jones M, Rhee SW, Cribbs DH, Cotman CW, Jeon NL (2005) A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Methods 2:599–605

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terenzio M, Schiavo G, Fainzilber M (2017) Compartmentalized signaling in neurons: from cell biology to neuroscience. Neuron 96:667–679

    CAS  PubMed  Google Scholar 

  • Tongiorgi E, Righi M, Cattaneo A (1997) Activity-dependent dendritic targeting of BDNF and TrkB mRNAs in hippocampal neurons. J Neurosci 17:9492–9505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Unsain N, Barker PA (2015) New views on the misconstrued: executioner caspases and their diverse non-apoptotic roles. Neuron 88:461–474

    CAS  PubMed  Google Scholar 

  • Unsain N, Higgins JM, Parker KN, Johnstone AD, Barker PA (2013) XIAP regulates caspase activity in degenerating axons. Cell Rep 4:751–763

    CAS  PubMed  Google Scholar 

  • Vignoli B, Battistini G, Melani R, Blum R, Santi S, Berardi N, Canossa M (2016) Peri-synaptic glia recycles brain-derived neurotrophic factor for LTP stabilization and memory retention. Neuron 92:873–887

    CAS  PubMed  Google Scholar 

  • Vonsattel JP, DiFiglia M (1998) Huntington disease. J Neuropathol Exp Neurol 57:369–384

    CAS  PubMed  Google Scholar 

  • Wang J-Y, Luo Z-G (2014) Non-apoptotic role of caspase-3 in synapse refinement. Neurosci Bull 30:667–670

    PubMed  PubMed Central  Google Scholar 

  • Wang N et al (2014) Neuronal targets for reducing mutant huntingtin expression to ameliorate disease in a mouse model of Huntington’s disease. Nat Med 20(5):536–541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ZH, **ang J, Liu X, Yu SP, Manfredsson FP, Sandoval IM, Wu S, Wang JZ, Ye K (2019) Deficiency in BDNF/TrkB neurotrophic activity stimulates δ-secretase by upregulating C/EBPβ in Alzheimer’s disease. Cell Rep 28:655–669.e5

    CAS  PubMed  PubMed Central  Google Scholar 

  • Webster MJ, Herman MM, Kleinman JE, Shannon Weickert C (2006) BDNF and trkB mRNA expression in the hippocampus and temporal cortex during the human lifespan. Gene Expr Patterns 6:941–951

    CAS  PubMed  Google Scholar 

  • Weismann A (1890) Prof. Weismann’s theory of heredity. Nature 41:137–323

    Google Scholar 

  • Westphal D, Kluck RM, Dewson G (2014) Building blocks of the apoptotic pore: how Bax and Bak are activated and oligomerize during apoptosis. Cell Death Differ 21(2):196–205

    CAS  PubMed  Google Scholar 

  • Willis DE, Twiss JL (2011) Profiling axonal mRNA transport. Methods Mol Biol 714:335–352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woo D, Seo Y, Jung H, Kim S, Kim N, Park SM, Lee H, Lee S, Cho KH, Do Heo W (2019) Locally activating TrkB receptor generates actin waves and specifies axonal fate. Cell Chem Biol 26:1652–1663.e4

    CAS  PubMed  Google Scholar 

  • **ang J, Wang ZH, Ahn EH, Liu X, Yu SP, Manfredsson FP, Sandoval IM, Ju G, Wu S, Ye K (2019) Delta-secretase-cleaved Tau antagonizes TrkB neurotrophic signalings, mediating Alzheimer’s disease pathologies. Proc Natl Acad Sci U S A 116:9094–9102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan X, Liu J, Huang J, Huang M, He F, Ye Z, **ao W, Hu X, Luo Z (2014) Electrical stimulation induces calcium-dependent neurite outgrowth and immediate early genes expressions of dorsal root ganglion neurons. Neurochem Res 39:129–141

    CAS  PubMed  Google Scholar 

  • Yan X, Liu J, Ye Z, Huang J, He F, **ao W, Hu X, Luo Z (2016) CaMKII-mediated CREB phosphorylation is involved in Ca2+-induced BDNF mRNA transcription and neurite outgrowth promoted by electrical stimulation. PLoS One 7(6):e40133. https://doi.org/10.1371/journal.pone.0040133

    Article  CAS  Google Scholar 

  • Yoshii A, Constantine-Paton M (2010) Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease. Dev Neurobiol 70:304–322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zalcman G, Federman N, Romano A (2018) CaMKII Isoforms in Learning and Memory: Localization and Function. Front Mol Neurosci 11:445

  • Zeng Y, Zhao D, **e CW (2010) Neurotrophins enhance CaMKII activity and rescue amyloid-β-induced deficits in hippocampal synaptic plasticity. J Alzheimers Dis 21:823–831

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XH, Poo MM (2002) Localized synaptic potentiation by BDNF requires local protein synthesis in the develo** axon. Neuron 36:675–688

    CAS  PubMed  Google Scholar 

  • Zhao X, Chen X-Q, Han E, Hu Y, Paik P, Ding Z, Overman J, Lau AL, Shahmoradian SH, Chiu W et al (2016) TRiC subunits enhance BDNF axonal transport and rescue striatal atrophy in Huntington’s disease. PNAS 113(38):E5655–E5664

  • Zhou X, Lin DS, Zheng F, Sutton MA, Wang H (2010) Intracellular calcium and calmodulin link brain-derived neurotrophic factor to p70S6 kinase phosphorylation and dendritic protein synthesis. J Neurosci Res 88:1420–1432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zuccato C et al (2001) Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 293(5529):493–498 10

    CAS  PubMed  Google Scholar 

Download references

Funding

W.C.M. is supported by NIH grants 5R01AG055523-02 and R01AG061151-01, the Cure Alzheimer’s Fund (UCSD 2019-2544), and the Larry Hillblom Foundation (2019-A-006-NET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Mobley.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnstone, A., Mobley, W. Local TrkB signaling: themes in development and neural plasticity. Cell Tissue Res 382, 101–111 (2020). https://doi.org/10.1007/s00441-020-03278-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-020-03278-7

Keywords

Navigation