Log in

Investigation of genes important in neurodevelopment disorders in adult human brain

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Several neurodevelopmental disorders (NDDs) are caused by mutations in genes expressed in fetal brain, but little is known about these same genes in adult human brain. Here, we test the hypothesis that genes associated with NDDs continue to have a role in adult human brain to explore the idea that NDD symptoms may be partially a result of their adult function rather than just their neurodevelopmental function. To demonstrate adult brain function, we performed expression analyses and ChIPseq in human neural stem cell(NSC) lines at different developmental stages and adult human brain, targeting two genes associated with NDDs, SATB2 and EHMT1, and the WNT signaling gene TCF7L2, which has not been associated with NDDs. Analysis of DNA interaction sites in neural stem cells reveals high (40–50 %) overlap between proliferating and differentiating cells for each gene in temporal space. Studies in adult brain demonstrate that consensus sites are similar to NSCs but occur at different genomic locations. We also performed expression analyses using BrainSpan data for NDD-associated genes SATB2, EHMT1, FMR1, MECP2, MBD5, CTNND2, RAI1, CHD8, GRIN2A, GRIN2B, TCF4, SCN2A, and DYRK1A and find high expression of these genes in adult brain, at least comparable to develo** human brain, confirming that genes associated with NDDs likely have a role in adult tissue. Adult function of genes associated with NDDs might be important in clinical disease presentation and may be suitable targets for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

NSC:

Neural stem cells

FBC:

Fetal brain cells

iPSC-NPC:

Induced pluripotent stem cell-neural progenitor cells

References

  • Alcamo EA, Chirivella L, Dautzenberg M, Dobreva G, Farinas I, Grosschedl R, McConnell SK (2008) Satb2 regulates callosal projection neuron identity in the develo** cerebral cortex. Neuron 57:364–377

    Article  CAS  PubMed  Google Scholar 

  • Aradi I, Santhakumar V, Soltesz I (2004) Impact of heterogeneous perisomatic IPSC populations on pyramidal cell firing rates. J Neurophysiol 91:2849–2858

    Article  PubMed  Google Scholar 

  • Britanova O, de Juan Romero C, Cheung A, Kwan KY, Schwark M, Gyorgy A, Vogel T, Akopov S, Mitkovski M, Agoston D, Sestan N, Molnar Z, Tarabykin V (2008) Satb2 is a postmitotic determinant for upper-layer neuron specification in the neocortex. Neuron 57:378–392

    Article  CAS  PubMed  Google Scholar 

  • Castren E, Elgersma Y, Maffei L, Hagerman R (2012) Treatment of neurodevelopmental disorders in adulthood. J Neurosci 32:14074–14079

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen B, Wang SS, Hattox AM, Rayburn H, Nelson SB, McConnell SK (2008) The Fezf2-Ctip2 genetic pathway regulates the fate choice of subcortical projection neurons in the develo** cerebral cortex. Proc Natl Acad Sci USA 105:11382–11387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng C, Alexander R, Min R, Leng J, Yip KY, Rozowsky J, Yan KK, Dong X, Djebali S, Ruan Y, Davis CA, Carninci P, Lassman T, Gingeras TR, Guigo R, Birney E, Weng Z, Snyder M, Gerstein M (2012) Understanding transcriptional regulation by integrative analysis of transcription factor binding data. Genome Res 22:1658–1667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Docker D, Schubach M, Menzel M, Munz M, Spaich C, Biskup S, Bartholdi D (2014) Further delineation of the SATB2 phenotype. Eur J Hum Genet 22:1034–1039

    Article  PubMed Central  PubMed  Google Scholar 

  • Dumais A, Lesage AD, Boyer R, Lalovic A, Chawky N, Menard-Buteau C, Kim C, Turecki G (2005) Psychiatric risk factors for motor vehicle fatalities in young men. Can J Psychiatry 50:838–844

    PubMed  Google Scholar 

  • Ehninger D, Li W, Fox K, Stryker MP, Silva AJ (2008) Reversing neurodevelopmental disorders in adults. Neuron 60:950–960

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Florez JC, Jablonski KA, Bayley N, Pollin TI, de Bakker PI, Shuldiner AR, Knowler WC, Nathan DM, Altshuler D, Diabetes Prevention Program Research G (2006) TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. N Engl J Med 355:241–250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frietze S, Wang R, Yao L, Tak YG, Ye Z, Gaddis M, Witt H, Farnham PJ, ** VX (2012) Cell type-specific binding patterns reveal that TCF7L2 can be tethered to the genome by association with GATA3. Genome Biol 13:R52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao XF, Chen W, Kong XP, Xu AM, Wang ZG, Sweeney G, Wu D (2009) Enhanced susceptibility of Cpt1c knockout mice to glucose intolerance induced by a high-fat diet involves elevated hepatic gluconeogenesis and decreased skeletal muscle glucose uptake. Diabetologia 52:912–920

    Article  CAS  PubMed  Google Scholar 

  • Geschwind DH, Levitt P (2007) Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol 17:103–111

    Article  CAS  PubMed  Google Scholar 

  • Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, Helgason A, Stefansson H, Emilsson V, Helgadottir A, Styrkarsdottir U, Magnusson KP, Walters GB, Palsdottir E, Jonsdottir T, Gudmundsdottir T, Gylfason A, Saemundsdottir J, Wilensky RL, Reilly MP, Rader DJ, Bagger Y, Christiansen C, Gudnason V, Sigurdsson G, Thorsteinsdottir U, Gulcher JR, Kong A, Stefansson K (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38:320–323

    Article  CAS  PubMed  Google Scholar 

  • Grosschedl R, Giese K, Pagel J (1994) HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. Trends Genet 10:94–100

    Article  CAS  PubMed  Google Scholar 

  • Jaeger J, Manu Reinitz J (2012) Drosophila blastoderm patterning. Curr Opin Genet Dev 22:533–541

    Article  CAS  PubMed  Google Scholar 

  • Kalkman HO (2012) A review of the evidence for the canonical Wnt pathway in autism spectrum disorders. Mol Autism 3:10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X, Li M, Sousa AM, Pletikos M, Meyer KA, Sedmak G, Guennel T, Shin Y, Johnson MB, Krsnik Z, Mayer S, Fertuzinhos S, Umlauf S, Lisgo SN, Vortmeyer A, Weinberger DR, Mane S, Hyde TM, Huttner A, Reimers M, Kleinman JE, Sestan N (2011) Spatio-temporal transcriptome of the human brain. Nature 478:483–489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kleefstra T, Brunner HG, Amiel J, Oudakker AR, Nillesen WM, Magee A, Genevieve D, Cormier-Daire V, van Esch H, Fryns JP, Hamel BC, Sistermans EA, de Vries BB, van Bokhoven H (2006) Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome. Am J Hum Genet 79:370–377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kleefstra T, Kramer JM, Neveling K, Willemsen MH, Koemans TS, Vissers LE, Wissink-Lindhout W, Fenckova M, van den Akker WM, Kasri NN, Nillesen WM, Prescott T, Clark RD, Devriendt K, van Reeuwijk J, de Brouwer AP, Gilissen C, Zhou H, Brunner HG, Veltman JA, Schenck A, van Bokhoven H (2012) Disruption of an EHMT1-associated chromatin-modification module causes intellectual disability. Am J Hum Genet 91:73–82

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krumm N, O’Roak BJ, Shendure J, Eichler EE (2014) A de novo convergence of autism genetics and molecular neuroscience. Trends Neurosci 37:95–105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Landt SG, Marinov GK, Kundaje A, Kheradpour P, Pauli F, Batzoglou S, Bernstein BE, Bickel P, Brown JB, Cayting P, Chen Y, DeSalvo G, Epstein C, Fisher-Aylor KI, Euskirchen G, Gerstein M, Gertz J, Hartemink AJ, Hoffman MM, Iyer VR, Jung YL, Karmakar S, Kellis M, Kharchenko PV, Li Q, Liu T, Liu XS, Ma L, Milosavljevic A, Myers RM, Park PJ, Pazin MJ, Perry MD, Raha D, Reddy TE, Rozowsky J, Shoresh N, Sidow A, Slattery M, Stamatoyannopoulos JA, Tolstorukov MY, White KP, ** S, Farnham PJ, Lieb JD, Wold BJ, Snyder M (2012) ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res 22:1813–1831

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Link PA, Gangisetty O, James SR, Woloszynska-Read A, Tachibana M, Shinkai Y, Karpf AR (2009) Distinct roles for histone methyltransferases G9a and GLP in cancer germ-line antigen gene regulation in human cancer cells and murine embryonic stem cells. Mol Cancer Res 7:851–862

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matevossian A, Akbarian S (2008) A chromatin assay for human brain tissue. J Vis Exp. doi:10.3791/717

  • Mele M, Ferreira PG, Reverter F, DeLuca DS, Monlong J, Sammeth M, Young TR, Goldmann JM, Pervouchine DD, Sullivan TJ, Johnson R, Segre AV, Djebali S, Niarchou A, Consortium GT, Wright FA, Lappalainen T, Calvo M, Getz G, Dermitzakis ET, Ardlie KG, Guigo R (2015) Human genomics. The human transcriptome across tissues and individuals. Science 348:660–665

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mitchell RK, Mondragon A, Chen L, McGinty JA, French PM, Ferrer J, Thorens B, Hodson DJ, Rutter GA, Da Silva Xavier G (2015) Selective disruption of Tcf7l2 in the pancreatic beta cell impairs secretory function and lowers beta cell mass. Hum Mol Genet 24:1390–1399

    Article  PubMed Central  PubMed  Google Scholar 

  • Roose J, Clevers H (1999) TCF transcription factors: molecular switches in carcinogenesis. Biochim Biophys Acta 1424:M23–M37

    CAS  PubMed  Google Scholar 

  • Rosenfeld JA, Ballif BC, Lucas A, Spence EJ, Powell C, Aylsworth AS, Torchia BA, Shaffer LG (2009) Small deletions of SATB2 cause some of the clinical features of the 2q33.1 microdeletion syndrome. PLoS One 4:e6568

    Article  PubMed Central  PubMed  Google Scholar 

  • Szemes M, Gyorgy A, Paweletz C, Dobi A, Agoston DV (2006) Isolation and characterization of SATB2, a novel AT-rich DNA binding protein expressed in development- and cell-specific manner in the rat brain. Neurochem Res 31:237–246

    Article  CAS  PubMed  Google Scholar 

  • Tachibana M, Ueda J, Fukuda M, Takeda N, Ohta T, Iwanari H, Sakihama T, Kodama T, Hamakubo T, Shinkai Y (2005) Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev 19:815–826

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  • Talkowski ME, Rosenfeld JA, Blumenthal I, Pillalamarri V, Chiang C, Heilbut A, Ernst C, Hanscom C, Rossin E, Lindgren AM, Pereira S, Ruderfer D, Kirby A, Ripke S, Harris DJ, Lee JH, Ha K, Kim HG, Solomon BD, Gropman AL, Lucente D, Sims K, Ohsumi TK, Borowsky ML, Loranger S, Quade B, Lage K, Miles J, Wu BL, Shen Y, Neale B, Shaffer LG, Daly MJ, Morton CC, Gusella JF (2012) Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell 149:525–537

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tebbenkamp AT, Willsey AJ, State MW, Sestan N (2014) The developmental transcriptome of the human brain: implications for neurodevelopmental disorders. Curr Opin Neurol 27:149–156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Valenta T, Lukas J, Korinek V (2003) HMG box transcription factor TCF-4′s interaction with CtBP1 controls the expression of the Wnt target Axin2/Conductin in human embryonic kidney cells. Nucleic Acids Res 31:2369–2380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wolfgang MJ, Kurama T, Dai Y, Suwa A, Asaumi M, Matsumoto S, Cha SH, Shimokawa T, Lane MD (2006) The brain-specific carnitine palmitoyltransferase-1c regulates energy homeostasis. Proc Natl Acad Sci USA 103:7282–7287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zarate YA, Perry H, Ben-Omran T, Sellars EA, Stein Q, Almureikhi M, Simmons K, Klein O, Fish J, Feingold M, Douglas J, Kruer MC, Si Y, Mao R, McKnight D, Gibellini F, Retterer K, Slavotinek A (2015) Further supporting evidence for the SATB2-associated syndrome found through whole exome sequencing. Am J Med Genet A 167:1026–1032

    Article  CAS  Google Scholar 

  • Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang J, Zhang H, Liu J, Tu X, Zang Y, Zhu J, Chen J, Dong L, Zhang J (2012) miR-30 inhibits TGF-beta1-induced epithelial-to-mesenchymal transition in hepatocyte by targeting Snail1. Biochem Biophys Res Commun 417:1100–1105

    Article  CAS  PubMed  Google Scholar 

  • Zhong J, Carrozza DP, Williams K, Pritchett DB, Molinoff PB (1995) Expression of mRNAs encoding subunits of the NMDA receptor in develo** rat brain. J Neurochem 64:531–539

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from the Scottish Rite Charitable Foundation of Canada and the Canada Research Chairs program to CE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Ernst.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

G. Maussion and A. B. Diallo contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maussion, G., Diallo, A.B., Gigek, C.O. et al. Investigation of genes important in neurodevelopment disorders in adult human brain. Hum Genet 134, 1037–1053 (2015). https://doi.org/10.1007/s00439-015-1584-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-015-1584-z

Keywords

Navigation