Log in

Integrated analysis of single-cell and bulk RNA-sequencing identifies a signature based on NK cell marker genes to predict prognosis and immunotherapy response in hepatocellular carcinoma

  • Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

Prognostic modeling of NK cell marker genes in patients with hepatocellular carcinoma based on single cell sequencing and transcriptome data analysis.

Methods

Marker genes of NK cells were analyzed according to single cell sequencing data of hepatocellular carcinoma. Univariate Cox regression, lasso regression analysis, and multivariate Cox regression were performed to estimate the prognostic value of NK cell marker genes. TCGA, GEO and ICGC transcriptomic data were applied to build and validate the model. Patients were divided into high and low risk groups based on the median risk score. XCELL, timer, quantitative sequences, MCP counter, EPIC, CIBERSORT and CIBERSORT-abs were performed to explore the relationship between risk score and tumor microenvironment in hepatocellular carcinoma. Finally the sensitivity of the model to chemotherapeutic agents was predicted.

Results

Single-cell sequencing identified 207 marker genes for NK cells in hepatocellular carcinoma. Enrichment analysis suggested that NK cell marker genes were mainly involved in cellular immune function. Eight genes were selected for prognostic modeling after multifactorial COX regression analysis. The model was validated in GEO and ICGC data. Immune cell infiltration and function were higher in the low-risk group than in the high-risk group. The low-risk group was more suitable for ICI and PD-1 therapy. Half-maximal inhibitory concentrations of Sorafenib, Lapatinib, Dabrafenib, and Axitinib were significantly different on the two risk groups.

Conclusion

A new signature of hepatocyte NK cell marker genes possesses a powerful ability to predict prognosis and immunotherapeutic response in patients with hepatocellular carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data used in this study can be downloaded from TCGA (https://tcga-data.nci.nih.gov/tcga/), GEO (https://www.ncbi.nlm.nih.gov/geo/) and ICGC (https://dcc.icgc.org/).

Abbreviations

scRNA-seq:

Single-cell RNA sequencing

RNA-seq:

RNA sequencing

TCGA:

The Cancer Genome Atlas

GEO:

Gene Expression Omnibus

ICGC:

International Cancer Genome Consortium

GSVA:

Gene set variation analysis

TME:

Tumor microenvironment

DEGs:

Differentially expressed genes

ICB:

Immune checkpoint blockade

KEGG:

Kyoko Gene and Genome Encyclopedia

GO:

Gene ontology

TMB:

Tumor mutational burden

LASSO:

Least absolute shrinkage and selection operator

KEGG:

Kyoto Encyclopedia of Genes and Genomes

References

  • Bernardini G, Antonangeli F, Bonanni V, Santoni A (2016) Dysregulation of chemokine/chemokine receptor axes and NK cell tissue localization during diseases. Front Immunol 7:402

    Article  PubMed  PubMed Central  Google Scholar 

  • Bode D, Cull AH, Rubio-Lara JA, Kent DG (2021) Exploiting single-cell tools in gene and cell therapy. Front Immunol 12:702636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brauning A, Rae M, Zhu G, Fulton E, Admasu TD, Stolzing A et al (2022) Aging of the immune system: focus on natural killer cells phenotype and functions. Cells 11(6):1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chidambaranathan-Reghupaty S, Fisher PB, Sarkar D (2021) Hepatocellular carcinoma (HCC): epidemiology, etiology and molecular classification. Adv Cancer Res 149:1–61

    Article  PubMed  Google Scholar 

  • Crispe IN (2014) Immune tolerance in liver disease. Hepatology (baltimore, MD) 60(6):2109–2117

    Article  CAS  PubMed  Google Scholar 

  • Dimitroulis D, Damaskos C, Valsami S, Davakis S, Garmpis N, Spartalis E et al (2017) From diagnosis to treatment of hepatocellular carcinoma: an epidemic problem for both developed and develo** world. World J Gastroenterol 23(29):5282–5294

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong S, Guo X, Han F, He Z, Wang Y (2022) Emerging role of natural products in cancer immunotherapy. Acta Pharmaceutica Sinica b 12(3):1163–1185

    Article  CAS  PubMed  Google Scholar 

  • Forner A, Reig M, Bruix J (2018) Hepatocellular carcinoma. Lancet (london, England) 391(10127):1301–1314

    Article  PubMed  Google Scholar 

  • Fu Y, Liu S, Zeng S, Shen H (2019) From bench to bed: the tumor immune microenvironment and current immunotherapeutic strategies for hepatocellular carcinoma. J Exp Clin Cancer Res: CR 38(1):396

    Article  PubMed  PubMed Central  Google Scholar 

  • Gajewski TF, Schreiber H, Fu YX (2013) Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14(10):1014–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganesan P, Kulik LM (2023) Hepatocellular carcinoma: new developments. Clin Liver Dis 27(1):85–102

    Article  PubMed  Google Scholar 

  • He S, Zhang J, Zhang W, Chen F, Luo R (2017) FOXA1 inhibits hepatocellular carcinoma progression by suppressing PIK3R1 expression in male patients. J Exp Clin Cancer Res: CR 36(1):175

    Article  PubMed  PubMed Central  Google Scholar 

  • Herberman RB, Nunn ME, Holden HT, Lavrin DH (1975) Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int J Cancer 16(2):230–239

    Article  CAS  PubMed  Google Scholar 

  • Hernaez R, Avila MA (2023) Immunogenomic classification of hepatocellular carcinoma patients for immune check-point inhibitors therapy: cui bono? Gut 72(1):7–9

    Article  PubMed  Google Scholar 

  • Jovic D, Liang X, Zeng H, Lin L, Xu F, Luo Y (2022) Single-cell RNA sequencing technologies and applications: a brief overview. Clin Transl Med 12(3):e694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khandelwal A, Crowley VM, Blagg BSJ (2016) Natural product inspired N-terminal Hsp90 inhibitors: from bench to bedside? Med Res Rev 36(1):92–118

    Article  CAS  PubMed  Google Scholar 

  • Kiessling R, Klein E, Wigzell H (1975) “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 5(2):112–117

    Article  CAS  PubMed  Google Scholar 

  • Kulik L, El-Serag HB (2019) Epidemiology and management of hepatocellular carcinoma. Gastroenterology 156(2):477–91.e1

    Article  PubMed  Google Scholar 

  • Lei Y, Tang R, Xu J, Wang W, Zhang B, Liu J et al (2021) Applications of single-cell sequencing in cancer research: progress and perspectives. J Hematol Oncol 14(1):91

    Article  PubMed  PubMed Central  Google Scholar 

  • Li XY, Shen Y, Zhang L, Guo X, Wu J (2022) Understanding initiation and progression of hepatocellular carcinoma through single cell sequencing. Biochim Biophys Acta 1877(3):188720

    CAS  Google Scholar 

  • Liu F, Liu W, Zhou S, Yang C, Tian M, Jia G et al (2020) Identification of FABP5 as an immunometabolic marker in human hepatocellular carcinoma. J Immunother Cancer. 8(2):e000501

    Article  PubMed  PubMed Central  Google Scholar 

  • Marrero JA, Kulik LM, Sirlin CB, Zhu AX, Finn RS, Abecassis MM et al (2018) Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American association for the study of liver diseases. Hepatology (baltimore, MD) 68(2):723–750

    Article  PubMed  Google Scholar 

  • Melnekoff DT, Laganà A (2022) Single-cell sequencing technologies in precision oncology. Adv Exp Med Biol 1361:269–282

    Article  PubMed  Google Scholar 

  • Nagaraju GP, Dariya B, Kasa P, Peela S, El-Rayes BF (2022) Epigenetics in hepatocellular carcinoma. Semin Cancer Biol 86(Pt 3):622–632

    Article  CAS  PubMed  Google Scholar 

  • Piñeiro Fernández J, Luddy KA, Harmon C, O’Farrelly C (2019) Hepatic tumor microenvironments and effects on NK cell phenotype and function. Int J Mol Sci 20(17):4131

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramachandran P, Matchett KP, Dobie R, Wilson-Kanamori JR, Henderson NC (2020) Single-cell technologies in hepatology: new insights into liver biology and disease pathogenesis. Nat Rev Gastroenterol Hepatol 17(8):457–472

    Article  PubMed  Google Scholar 

  • Regan PL, Jacobs J, Wang G, Torres J, Edo R, Friedmann J et al (2011) Hsp90 inhibition increases p53 expression and destabilizes MYCN and MYC in neuroblastoma. Int J Oncol 38(1):105–112

    CAS  PubMed  Google Scholar 

  • Robinson MW, Harmon C, O’Farrelly C (2016) Liver immunology and its role in inflammation and homeostasis. Cell Mol Immunol 13(3):267–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stabile H, Fionda C, Gismondi A, Santoni A (2017) Role of distinct natural killer cell subsets in anticancer response. Front Immunol 8:293

    Article  PubMed  PubMed Central  Google Scholar 

  • Stuart T, Satija R (2019) Integrative single-cell analysis. Nat Rev Genet 20(5):257–272

    Article  CAS  PubMed  Google Scholar 

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin 71(3):209–249

    PubMed  Google Scholar 

  • Suvà ML, Tirosh I (2019) Single-cell RNA sequencing in cancer: lessons learned and emerging challenges. Mol Cell 75(1):7–12

    Article  PubMed  Google Scholar 

  • Vujanovic L, Stahl EC, Pardee AD, Geller DA, Tsung A, Watkins SC et al (2017) Tumor-derived α-fetoprotein directly drives human natural killer-cell activation and subsequent cell death. Cancer Immunol Res 5(6):493–502

    Article  CAS  PubMed  Google Scholar 

  • **ang X, You XM, Li LQ (2018) Expression of HSP90AA1/HSPA8 in hepatocellular carcinoma patients with depression. Onco Targets Ther 11:3013–3023

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Q, Tu J, Dou C, Zhang J, Yang L, Liu X et al (2017) HSP90 promotes cell glycolysis, proliferation and inhibits apoptosis by regulating PKM2 abundance via Thr-328 phosphorylation in hepatocellular carcinoma. Mol Cancer 16(1):178

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu LX, He MH, Dai ZH, Yu J, Wang JG, Li XC et al (2019) Genomic and transcriptional heterogeneity of multifocal hepatocellular carcinoma. Ann Oncol: off J Eur Soc Med Oncol 30(6):990–997

    Article  CAS  Google Scholar 

  • Yang C, Shao Y, Wang X, Wang J, Wang P, Huang C et al (2023) The effect of the histone chaperones HSPA8 and DEK on tumor immunity in hepatocellular carcinoma. Int J Mol Sci 24(3):2653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Lou Y, Yang J, Wang J, Feng J, Zhao Y et al (2019) Integrated multiomic analysis reveals comprehensive tumour heterogeneity and novel immunophenotypic classification in hepatocellular carcinomas. Gut 68(11):2019–2031

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Yan X, Wen P, Bai W, Zhang Q (2021) CircANKRD52 promotes the tumorigenesis of hepatocellular carcinoma by sponging miR-497-5p and upregulating BIRC5 expression. Cell Transplant 30:9636897211008874

    Article  PubMed  Google Scholar 

  • Zhuang W, Sun H, Zhang S, Zhou Y, Weng W, Wu B et al (2021) An immunogenomic signature for molecular classification in hepatocellular carcinoma. Mol Ther Nucleic Acids 25:105–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Funding

This study was funded by the National Key Research Programme of China (2022YFC2407304).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: DY, FZ, YZ. Data curation: JS, YS. Formal analysis: DY, BY. Writing-original draft: DY, FZ, KZ. Writing—review and editing: YD, KZ.

Corresponding authors

Correspondence to Kailiang Zhao or Youming Ding.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Zhao, F., Su, Y. et al. Integrated analysis of single-cell and bulk RNA-sequencing identifies a signature based on NK cell marker genes to predict prognosis and immunotherapy response in hepatocellular carcinoma. J Cancer Res Clin Oncol 149, 10609–10621 (2023). https://doi.org/10.1007/s00432-023-04965-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-023-04965-y

Keywords

Navigation