Log in

Expression and regulation of CacyBP/SIP in chronic lymphocytic leukemia cell balances of cell proliferation with apoptosis

  • Original Article – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Chronic lymphocytic leukemia (CLL) is the most common leukemia in Western countries, with incidence in Chinese populations also increasing. CLL involves an accumulation of abnormal B cells which result in dysregulation of cell proliferation and apoptosis rates. The calcyclin-binding protein/Siah-1-interacting protein (CacyBP/SIP) plays a pivotal role in tumorigenicity and cell apoptosis. Here, we investigated the function of CacyBP/SIP in CLL cell proliferation and apoptosis.

Methods

CacyBP/SIP expression levels were measured in peripheral blood mononuclear cells from 23 Chinese CLL patients and three healthy donors by western blotting. Correlation analysis was performed to assess associations between CacyBP/SIP expression and clinical stage, chromosome abnormalities and zeta-chain-associated protein kinase 70 (ZAP-70) expression. We silenced CacyBP/SIP expression in MEC-1 cells using a lentivirus system and analyzed cell vitality, cell cycle and tumorigenicity. Apoptosis was also analyzed following the upregulation of CacyBP/SIP expression in MEC-1 cells.

Results

Downregulation of CacyBP/SIP expression in CLL patients was negatively correlated with CLL clinical stage, but not with patient sex, age, del(13q14) or del(17q-) presence, or ZAP-70 expression. CacyBP/SIP silencing significantly enhanced cell proliferation and tumorigenicity. CacyBP/SIP silencing promoted accumulation of cells in S phase by upregulation of β-catenin, cyclin D1 and cyclin E, and downregulation of p21. Moreover, CacyBP/SIP overexpression facilitated CLL apoptosis through the activation of pro-caspase-3.

Conclusion

CacyBP/SIP is a useful indicator of CLL disease processes and plays an important role in sustaining the balance of cell proliferation and apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acunzo M, Romano G, Wernicke D, Balatti V, Rassenti LZ, dell’Aquila M, Kipps TJ, Pekarsky Y, Croce CM (2014) Translocation t(2;11) in CLL cells results in CXCR4/MAML2 fusion oncogene. Blood 124:259–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Austen B, Powell JE, Alvi A, Edwards I, Hooper L, Starczynski J, Taylor AM, Fegan C, Moss P, Stankovic T (2005) Mutations in the ATM gene lead to impaired overall and treatment-free survival that is independent of IGVH mutation status in patients with B-CLL. Blood 106:3175–3182

    Article  CAS  PubMed  Google Scholar 

  • Bianchi S, Dighiero G, Pritsch O (2012) Selected topics in chronic lymphocytic leukemia pathogenesis. Chronic lymphocytic leukemia. InTech, Rijeka, pp 3–18

    Google Scholar 

  • Chen X, Han G, Zhai H, Zhang F, Wang J, Li X, Huang S, Wang X, Fan D (2008) Expression and clinical significance of CacyBP/SIP in pancreatic cancer. Pancreatology 8:470–477

    Article  PubMed  Google Scholar 

  • Chen X, Mo P, Li X, Zheng P, Zhao L, Xue Z, Ren G, Han G, Wang X, Fan D (2011) CacyBP/SIP protein promotes proliferation and G1/S transition of human pancreatic cancer cells. Mol Carcinog 50:804–810

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Zheng P, Xue Z, Li J, Wang W, Chen X, **e F, Yu Z, Ouyang X (2013) CacyBP/SIP enhances multidrug resistance of pancreatic cancer cells by regulation of P-gp and Bcl-2. Apoptosis 18:861–869

    Article  CAS  PubMed  Google Scholar 

  • Damle RN, Calissano C, Chiorazzi N (2010) Chronic lymphocytic leukaemia: a disease of activated monoclonal B cells. Best Pract Res Clin Haematol 23:33–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Decker T, Schneller F, Hipp S, Miething C, Jahn T, Duyster J, Peschel C (2002) Cell cycle progression of chronic lymphocytic leukemia cells is controlled by cyclin D2, cyclin D3, cyclin-dependent kinase (cdk) 4 and the cdk inhibitor p27. Leukemia 16:327–334

    Article  CAS  PubMed  Google Scholar 

  • Decker T, Hipp S, Ringshausen I, Bogner C, Oelsner M, Schneller F, Peschel C (2003) Rapamycin-induced G1 arrest in cycling B-CLL cells is associated with reduced expression of cyclin D3, cyclin E, cyclin A, and survivin. Blood 101:278–285

    Article  CAS  PubMed  Google Scholar 

  • Filipek A (2006) S100A6 and CacyBP/SIP—two proteins discovered in ehrlich ascites tumor cells that are potentially involved in the degradation of beta-catenin. Chemotherapy 52:32–34

    Article  CAS  PubMed  Google Scholar 

  • Filipek A, Kuznicki J (1998) Molecular cloning and expression of a mouse brain cDNA encoding a novel protein target of calcyclin. J Neurochem 70:1793–1798

    Article  CAS  PubMed  Google Scholar 

  • Halina A, Artur P, Barbara MK, Joanna S, Anna D (2010) Alterations in TP53, cyclin D2, c-Myc, p21WAF1/CIP1 and p27KIP1 expression associated with progression in B-CLL. Folia Histochem Cytobiol 48:534–541

    PubMed  Google Scholar 

  • Liu X, Wang L, Zhao S, Ji X, Luo Y, Ling F (2011) β-Catenin overexpression in malignant glioma and its role in proliferation and apoptosis in glioblastoma cells. Med Oncol 28:608–614

    Article  CAS  PubMed  Google Scholar 

  • Lowy AM, Clements WM, Bishop J, Kong L, Bonney T, Sisco K, Aronow B, Fenoglio-Preiser C, Groden J (2006) beta-Catenin/Wnt signaling regulates expression of the membrane type 3 matrix metalloproteinase in gastric cancer. Cancer Res 66:4734–4741

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Yang J, Yu BY, Liu W, Li M, Zhuang SM (2010) Identification of Siah-interacting protein as a potential regulator of apoptosis and curcumin resistance. Oncogene 29:6357–6366

    Article  CAS  PubMed  Google Scholar 

  • Malek SN (2013) The biology and clinical significance of acquired genomic copy number aberrations and recurrent gene mutations in chronic lymphocytic leukemia. Oncogene 32:2805–2817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marschitz I, Tinhofer I, Hittmair A, Egle A, Kos M, Greil R (2000) Analysis of Bcl-2 protein expression in chronic lymphocytic leukemia. A comparison of three semiquantitation techniques. Am J Clin Pathol 113:219–229

    Article  CAS  PubMed  Google Scholar 

  • Matsuzawa SI, Reed JC (2001) Siah-1, SIP, and Ebi collaborate in a novel pathway forb-catenin degradation linked to p53 responses. Mol Cell 7:915–926

    Article  CAS  PubMed  Google Scholar 

  • Ning X, Sun S, Hong L, Liang J, Liu L, Han S, Liu Z, Shi Y, Li Y, Gong W, Zhang S, Chen Y, Guo X, Cheng Y, Wu K, Fan D (2007) Calcyclin-binding protein inhibits proliferation, tumorigenicity, and invasion of gastric cancer. Mol Cancer Res 5:1254–1262

    Article  CAS  PubMed  Google Scholar 

  • Packham G, Stevenson FK (2005) Bodyguards and assassins: Bcl-2 family proteins and apoptosis control in chronic lymphocytic leukaemia. Immunology 114:441–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pekarsky Y, Zanesi N, Croce CM (2010) Molecular basis of CLL. Semin Cancer Biol 20:370–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Podhorecka M, Halicka D, Klimek P, Kowal M, Chocholska S, Dmoszynska A (2011) Resveratrol increases rate of apoptosis caused by purine analogues in malignant lymphocytes of chronic lymphocytic leukemia. Ann Hematol 90:173–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Razavi R, Gehrke I, Gandhirajan RK, Poll-Wolbeck SJ, Hallek M, Kreuzer KA (2011) Nitric oxide-donating acetylsalicylic acid induces apoptosis in chronic lymphocytic leukemia cells and shows strong antitumor efficacy in vivo. Clin Cancer Res 17:286–293

    Article  CAS  PubMed  Google Scholar 

  • Rosen A, Bergh AC, Gogok P, Evaldsson C, Myhrinder AL, Hellqvist E, Rasul A, Björkholm M, Jansson M, Mansouri L, Liu A, Teh BT, Rosenquist R, Klein E (2012) Lymphoblastoid cell line with B1 cell characteristics established from a chronic lymphocytic leukemia clone by in vitro EBV infection. Oncoimmunology 1:18–27

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossi D, Cerri M, Deambrogi C, Sozzi E, Cresta S, Rasi S, De Paoli L, Spina V, Gattei V, Capello D, Forconi F, Lauria F, Gaidano G (2009) The prognostic value of TP53 mutations in chronic lymphocytic leukemia is independent of Del17p13: implications for overall survival and chemorefractoriness. Clin Cancer Res 15:995–1004

    Article  CAS  PubMed  Google Scholar 

  • Sainz-Perez A, Gary-Gouy H, Gaudin F, Maarof G, Marfaing-Koka A, de Revel T, Dalloul A (2008) IL-24 induces apoptosis of chronic lymphocytic leukemia B cells engaged into the cell cycle through dephosphorylation of STAT3 and stabilization of p53 expression. J Immunol 181:6051–6060

    Article  CAS  PubMed  Google Scholar 

  • Schneider G, Filipek A (2011) S100A6 binding protein and Siah-1 interacting protein (CacyBP/SIP): spotlight on properties and cellular function. Amino Acids 41:773–780

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Gao Y, Tang Y, Wu Y, Gong H, Du J, Zheng B, Hu J, Shi Q, Yu R (2014) CacyBP/SIP protein is important for the proliferation of human glioma cells. IUBMB Life 66:286–291

    Article  CAS  PubMed  Google Scholar 

  • Sun S, Ning X, Liu J, Liu L, Chen Y, Han S, Zhang Y, Liang J, Wu K, Fan D (2007) Overexpressed CacyBP/SIP leads to the suppression of growth in renal cell carcinoma. Biochem Biophys Res Commun 356:864–871

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Pavletic ZS, Joshi SS (2002) Increased apoptosis in B-chronic lymphocytic leukemia cells as a result of cyclin D3 down regulation. Leuk Lymphoma 43:1827–1835

    Article  CAS  PubMed  Google Scholar 

  • Wickremasinghe RG, Prentice AG, Steele AJ (2011) p53 and Notch signaling in chronic lymphocytic leukemia: clues to identifying novel therapeutic strategies. Leukemia 25:1400–1407

    Article  CAS  PubMed  Google Scholar 

  • Wójtowicz M, Wołowiec D (2012) Dysregulation of apoptosis and proliferation in CLL cells. Chronic lymphocytic leukemia. InTech, Rijeka, pp 37–62

    Google Scholar 

  • **a ZB, Dai MS, Magoulas C, Broxmeyer HE, Lu L (2000) Differentially expressed genes during in vitro differentiation of murine embryonic stem cells transduced with a human erythropoietin receptor cDNA. J Hematotherapy Stem Cell Res 9:651–658

    Article  CAS  Google Scholar 

  • Zhu DX, Zhu W, Fang C, Fan L, Zou ZJ, Wang YH, Liu P, Hong M, Miao KR, Liu P, Xu W, Li JY (2012) miR-181a/b significantly enhances drug sensitivity in chronic lymphocytic leukemia cells via targeting multiple anti-apoptosis genes. Carcinogenesis 33:1294–1301

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Anders Rosén in Linkö** University for generously providing MEC-1 cells. This work was supported by the National Natural Science Foundation of China (81400127), the National Natural Science Foundation of China (81201264), National Natural Science Foundation of China (81200376), National Natural Science Foundation of China (81302034), Jiangsu Special Grant of Clinical Science (BL2013010) and Certificate of China Postdoctoral Science Foundation Grant (2015M571818).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kailin Xu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Chunling Fu, Yan Wan and Hengliang Shi have contributed equally to the work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, C., Wan, Y., Shi, H. et al. Expression and regulation of CacyBP/SIP in chronic lymphocytic leukemia cell balances of cell proliferation with apoptosis. J Cancer Res Clin Oncol 142, 741–748 (2016). https://doi.org/10.1007/s00432-015-2077-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-015-2077-0

Keywords

Navigation