Log in

Molecular and clinical profile of patients referred as Noonan or Noonan-like syndrome in Greece: a cohort of 86 patients

  • Research
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Noonan syndrome (NS) is an autosomal dominant disorder characterized by clinical and genetic heterogeneity. It belongs to a wider group of pathologies, known as Rasopathies, due to the implication of genes encoding components of the Ras/MAPK signalling pathway. Recording the genetic alterations across populations helps assessing specific features to specific genes which is essential for better disease’s recognition, prognosis and monitoring. Herein, we report the clinical and molecular data of a Greek cohort comprising of 86 NS or NS-like patients admitted at a single tertiary Centre in Athens, Greece. The analysis was performed using Sanger and next-generation sequencing, comprising 14 different genes. The mutational rates of the confirmed NS-associated genes in the Greek NS population are as follows: PTPN11 32.5%; RIT1 5.8%; SOS1 4.7%; BRAF 1.2%; CBL 1.2%; KRAS 1.2%; MAP2K1 1.2%; RAF1 1.2%; SHOC2 1.2%, corresponding to 50% of positivity in total NS population. The genotype–phenotype analysis showed statistically significant differences in craniofacial dysmorphisms (p = 0.005) and pulmonary valve stenosis (PS) (p < 0.001) frequencies between patients harbouring a pathogenic variant and patients without pathogenic variant in any of the tested genes. Patients with at least a pathogenic variant had 6.71 times greater odds to develop PS compared to pathogenic variant-negative patients (OR = 6.71, 95%; CI = (2.61, 17.27)). PTPN11 positive patients showed higher frequency of epicanthal folds (p = 0.004), ptosis (p = 0.001) and coarseness (p = 0.001) and lower frequency of neurological findings (p = 0.006), compared to patients carrying pathogenic variants in other genes.

Conclusion: Craniofacial dysmorphism and PS prevail among pathogenic variant positive compared to pathogenic variant negative NS and NS-like patients while neurological defects are less common in PTPN11-affected NS patients compared to patients harbouring pathogenic variants in other genes. The significant prevalence of the Ras/MAPK pathogenic variants (17.4%), other than PTPN11, in Greek NS patients, highlights the necessity of a wider spectrum of molecular diagnosis.

What is Known:

• Noonan syndrome (NS) has been associated with pathogenic variants in molecules-components of the Ras/MAPK pathway.

• Clinical and genetic description of NS patients worldwide helps establishing personalized monitoring.

What is New:

• NS and NS-like mutational rate in Greece reaches 50% with pathogenic variants identified mostly in PTPN11 (32.5%), RIT1 (6%) and SOS1 (4.7%) genes.

• The risk for pulmonary stenosis increases 6.71-fold in NS patients with a pathogenic variant compared to patients without genetic alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Raw data are available upon request.

Code availability

Not applicable.

Abbreviations

CFC:

Cardiofacio-cutaneous syndrome

HCM:

Hypertrophic cardiomyopathy

NS:

Noonan syndrome

PS:

Pulmonary valve stenosis

NGS:

Next-generation sequencing

SNPs:

Single-nucleotide polymorphisms

VUS:

Variants of unknown clinical significance

References

  1. Gross AM, Frone M, Gripp KW, Gelb BD, Schoyer L, Schill L, Stronach B, Biesecker LG, Esposito D, Hernandez ER, Legius E, Loh ML, Martin S, Morrison DK, Rauen KA, Wolters PL, Zand D, McCormick F, Savage SA, Stewart DR, Widemann BC, Yohe ME (2020) Advancing RAS/RASopathy therapies: an NCI-sponsored intramural and extramural collaboration for the study of RASopathies. Am J Med Genet A 182:866–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Roberts AE, Allanson JE, Tartaglia M, Gelb BD (2013) Noonan syndrome. Lancet 381:333–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Moschovi M, Touliatou V, Papadopoulou A, Mayakou MA, Nikolaidou-Karpathiou P, Kitsiou-Tzeli S (2007) Rhabdomyosarcoma in a patient with Noonan syndrome phenotype and review of the literature. J Pediatr Hematol Oncol 29:341–344

    Article  PubMed  Google Scholar 

  4. Yoon S, Seger R (2006) The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24:21–44

    Article  CAS  PubMed  Google Scholar 

  5. Rauen KA (2013) The RASopathies. Annu Rev Genomics Hum Genet 14:355–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tartaglia M, Mehler EL, Goldberg R, Zampino G, Brunner HG, Kremer H, van der Burgt I, Crosby AH, Ion A, Jeffery S, Kalidas K, Patton MA, Kucherlapati RS, Gelb BD (2001) Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet 29:465–468

    Article  CAS  PubMed  Google Scholar 

  7. Vissers LE, Bonetti M, Paardekooper Overman J, Nillesen WM, Frints SG, de Ligt J, Zampino G, Justino A, Machado JC, Schepens M, Brunner HG, Veltman JA, Scheffer H, Gros P, Costa JL, Tartaglia M, van der Burgt I, Yntema HG, den Hertog J (2015) Heterozygous germline mutations in A2ML1 are associated with a disorder clinically related to Noonan syndrome. Eur J Hum Genet 23:317–324

    Article  CAS  PubMed  Google Scholar 

  8. Brinkmann J, Lissewski C, Pinna V, Vial Y, Pantaleoni F, Lepri F, Daniele P, Burnyte B, Cuturilo G, Fauth C, Gezdirici A, Kotzot D, Gulec EY, Iotova V, Schanze D, Ramond F, Havlovicova M, Utine GE, Simsek-Kiper PO, Stoyanova M, Verloes A, De Luca A, Tartaglia M, Cave H, Zenker M (2021) The clinical significance of A2ML1 variants in Noonan syndrome has to be reconsidered. Eur J Hum Genet 29:524–527

    Article  CAS  PubMed  Google Scholar 

  9. Grant AR, Cushman BJ, Cave H, Dillon MW, Gelb BD, Gripp KW, Lee JA, Mason-Suares H, Rauen KA, Tartaglia M, Vincent LM, Zenker M (2018) Assessing the gene-disease association of 19 genes with the RASopathies using the ClinGen gene curation framework. Hum Mutat 39:1485–1493

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yamamoto GL, Aguena M, Gos M, Hung C, Pilch J, Fahiminiya S, Abramowicz A, Cristian I, Buscarilli M, Naslavsky MS, Malaquias AC, Zatz M, Bodamer O, Majewski J, Jorge AA, Pereira AC, Kim CA, Passos-Bueno MR, Bertola DR (2015) Rare variants in SOS2 and LZTR1 are associated with Noonan syndrome. J Med Genet 52:413–421

    Article  CAS  PubMed  Google Scholar 

  11. Tafazoli A, Eshraghi P, Pantaleoni F, Vakili R, Moghaddassian M, Ghahraman M, Muto V, Paolacci S, Golyan FF, Abbaszadegan MR (2018) Novel mutations and their genotype-phenotype correlations in patients with Noonan syndrome, using next-generation sequencing. Adv Med Sci 63:87–93

    Article  PubMed  Google Scholar 

  12. Athota JP, Bhat M, Nampoothiri S, Gowrishankar K, Narayanachar SG, Puttamallesh V, Farooque MO, Shetty S (2020) Molecular and clinical studies in 107 Noonan syndrome affected individuals with PTPN11 mutations. BMC Med Genet 21:50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Aoki Y, Niihori T, Banjo T, Okamoto N, Mizuno S, Kurosawa K, Ogata T, Takada F, Yano M, Ando T, Hoshika T, Barnett C, Ohashi H, Kawame H, Hasegawa T, Okutani T, Nagashima T, Hasegawa S, Funayama R, Nakayama K, Inoue S, Watanabe Y, Ogura T, Matsubara Y (2013) Gain-of-function mutations in RIT1 cause Noonan syndrome, a RAS/MAPK pathway syndrome. Am J Hum Genet 93:173–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nelson R (2019) Mek inhibitor reverses hypertrophic cardiomyopathy in RIT1 mutated Noonan syndrome: for the first time, hypertrophic cardiomyopathy was reversed in Noonan syndrome associated with a RIT1 mutation. Am J Med Genet A 179:1408–1409

    Article  Google Scholar 

  15. Aoki Y, Niihori T, Kawame H, Kurosawa K, Ohashi H, Tanaka Y, Filocamo M, Kato K, Suzuki Y, Kure S, Matsubara Y (2005) Germline mutations in HRAS proto-oncogene cause Costello syndrome. Nat Genet 37:1038–1040

    Article  CAS  PubMed  Google Scholar 

  16. Rodriguez-Viciana P, Tetsu O, Tidyman WE, Estep AL, Conger BA, Cruz MS, McCormick F, Rauen KA (2006) Germline mutations in genes within the MAPK pathway cause cardio-facio-cutaneous syndrome. Science 311:1287–1290

    Article  CAS  PubMed  Google Scholar 

  17. Brems H, Chmara M, Sahbatou M, Denayer E, Taniguchi K, Kato R, Somers R, Messiaen L, De Schepper S, Fryns JP, Cools J, Marynen P, Thomas G, Yoshimura A, Legius E (2007) Germline loss-of-function mutations in SPRED1 cause a neurofibromatosis 1-like phenotype. Nat Genet 39:1120–1126

    Article  CAS  PubMed  Google Scholar 

  18. Papadopoulou A, Issakidis M, Gole E, Kosma K, Fryssira H, Fretzayas A, Nicolaidou P, Kitsiou-Tzeli S (2012) Phenotypic spectrum of 80 Greek patients referred as Noonan syndrome and PTPN11 mutation analysis: the value of initial clinical assessment. Eur J Pediatr 171:51–58

    Article  PubMed  Google Scholar 

  19. van der Burgt I (2007) Noonan syndrome. Orphanet J Rare Dis 2:4

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chen PC, Yin J, Yu HW, Yuan T, Fernandez M, Yung CK, Trinh QM, Peltekova VD, Reid JG, Tworog-Dube E, Morgan MB, Muzny DM, Stein L, McPherson JD, Roberts AE, Gibbs RA, Neel BG, Kucherlapati R (2014) Next-generation sequencing identifies rare variants associated with Noonan syndrome. Proc Natl Acad Sci U S A 111:11473–11478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tartaglia M, Martinelli S, Stella L, Bocchinfuso G, Flex E, Cordeddu V, Zampino G, Burgt I, Palleschi A, Petrucci TC, Sorcini M, Schoch C, Foa R, Emanuel PD, Gelb BD (2006) Diversity and functional consequences of germline and somatic PTPN11 mutations in human disease. Am J Hum Genet 78:279–290

    Article  CAS  PubMed  Google Scholar 

  22. Tekendo-Ngongang C, Agenbag G, Bope CD, Esterhuizen AI, Wonkam A (2019) Noonan syndrome in South Africa: clinical and molecular profiles. Front Genet 10:333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. El Bouchikhi I, Belhassan K, Moufid FZ, Iraqui Houssaini M, Bouguenouch L, Samri I, Atmani S, Ouldim K (2016) Noonan syndrome-causing genes: molecular update and an assessment of the mutation rate. Int J Pediatr Adolesc Med 3:133–142

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chinton J, Huckstadt V, Moresco A, Gravina LP, Obregon MG (2019) Clinical and molecular characterization of children with Noonan syndrome and other RASopathies in Argentina. Arch Argent Pediatr 117:330–337

    PubMed  Google Scholar 

  25. Bertola DR, Castro MAA, Yamamoto GL, Honjo RS, Ceroni JR, Buscarilli MM, Freitas AB, Malaquias AC, Pereira AC, Jorge AAL, Passos-Bueno MR, Kim CA (2020) Phenotype-genotype analysis of 242 individuals with RASopathies: 18-year experience of a tertiary center in Brazil. Am J Med Genet C Semin Med Genet 184:896–911

    Article  CAS  PubMed  Google Scholar 

  26. Yaoita M, Niihori T, Mizuno S, Okamoto N, Hayashi S, Watanabe A, Yokozawa M et al (2016) Spectrum of mutations and genotype-phenotype analysis in Noonan syndrome patients with RIT1 mutations. Hum Genet 135:209–222

    Article  CAS  PubMed  Google Scholar 

  27. Bertola DR, Yamamoto GL, Almeida TF, Buscarilli M, Jorge AA, Malaquias AC, Kim CA, Takahashi VN, Passos-Bueno MR, Pereira AC (2014) Further evidence of the importance of RIT1 in Noonan syndrome. Am J Med Genet A 164A:2952–2957

    Article  PubMed  Google Scholar 

  28. Gos M, Fahiminiya S, Poznanski J, Klapecki J, Obersztyn E, Piotrowicz M, Wierzba J, Posmyk R, Bal J, Majewski J (2014) Contribution of RIT1 mutations to the pathogenesis of Noonan syndrome: four new cases and further evidence of heterogeneity. Am J Med Genet A 164A:2310–2316

    Article  PubMed  Google Scholar 

  29. Kouz K, Lissewski C, Spranger S, Mitter D, Riess A, Lopez-Gonzalez V, Luttgen S et al (2016) Genotype and phenotype in patients with Noonan syndrome and a RIT1 mutation. Genet Med 18:1226–1234

    Article  CAS  PubMed  Google Scholar 

  30. Tartaglia M, Pennacchio LA, Zhao C, Yadav KK, Fodale V, Sarkozy A, Pandit B, Oishi K, Martinelli S, Schackwitz W, Ustaszewska A, Martin J, Bristow J, Carta C, Lepri F, Neri C, Vasta I, Gibson K, Curry CJ, Siguero JP, Digilio MC, Zampino G, Dallapiccola B, Bar-Sagi D, Gelb BD (2007) Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nat Genet 39:75–79

    Article  CAS  PubMed  Google Scholar 

  31. Roberts AE, Araki T, Swanson KD, Montgomery KT, Schiripo TA, Joshi VA, Li L, Yassin Y, Tamburino AM, Neel BG, Kucherlapati RS (2007) Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Nat Genet 39:70–74

    Article  CAS  PubMed  Google Scholar 

  32. Lepri F, De Luca A, Stella L, Rossi C, Baldassarre G, Pantaleoni F, Cordeddu V et al (2011) SOS1 mutations in Noonan syndrome: molecular spectrum, structural insights on pathogenic effects, and genotype-phenotype correlations. Hum Mutat 32:760–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schubbert S, Zenker M, Rowe SL, Boll S, Klein C, Bollag G, van der Burgt I, Musante L, Kalscheuer V, Wehner LE, Nguyen H, West B, Zhang KY, Sistermans E, Rauch A, Niemeyer CM, Shannon K, Kratz CP (2006) Germline KRAS mutations cause Noonan syndrome. Nat Genet 38:331–336

    Article  CAS  PubMed  Google Scholar 

  34. Mazhab-Jafari MT, Marshall CB, Smith MJ, Gasmi-Seabrook GM, Stathopulos PB, Inagaki F, Kay LE, Neel BG, Ikura M (2015) Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site. Proc Natl Acad Sci U S A 112:6625–6630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Niihori T, Aoki Y, Narumi Y, Neri G, Cave H, Verloes A, Okamoto N, Hennekam RC, Gillessen-Kaesbach G, Wieczorek D, Kavamura MI, Kurosawa K, Ohashi H, Wilson L, Heron D, Bonneau D, Corona G, Kaname T, Naritomi K, Baumann C, Matsumoto N, Kato K, Kure S, Matsubara Y (2006) Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome. Nat Genet 38:294–296

    Article  CAS  PubMed  Google Scholar 

  36. Carta C, Pantaleoni F, Bocchinfuso G, Stella L, Vasta I, Sarkozy A, Digilio C, Palleschi A, Pizzuti A, Grammatico P, Zampino G, Dallapiccola B, Gelb BD, Tartaglia M (2006) Germline missense mutations affecting KRAS Isoform B are associated with a severe Noonan syndrome phenotype. Am J Hum Genet 79:129–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Razzaque MA, Nishizawa T, Komoike Y, Yagi H, Furutani M, Amo R, Kamisago M, Momma K, Katayama H, Nakagawa M, Fujiwara Y, Matsushima M, Mizuno K, Tokuyama M, Hirota H, Muneuchi J, Higashinakagawa T, Matsuoka R (2007) Germline gain-of-function mutations in RAF1 cause Noonan syndrome. Nat Genet 39:1013–1017

    Article  CAS  PubMed  Google Scholar 

  38. Cordeddu V, Di Schiavi E, Pennacchio LA, Ma’ayan A, Sarkozy A, Fodale V, Cecchetti S et al (2009) Mutation of SHOC2 promotes aberrant protein N-myristoylation and causes Noonan-like syndrome with loose anagen hair. Nat Genet 41:1022–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Baldassarre G, Mussa A, Banaudi E, Rossi C, Tartaglia M, Silengo M, Ferrero GB (2014) Phenotypic variability associated with the invariant SHOC2 c.4A>G (p.Ser2Gly) missense mutation. Am J Med Genet A 164A:3120–3125

    Article  PubMed  Google Scholar 

  40. Martinelli S, De Luca A, Stellacci E, Rossi C, Checquolo S, Lepri F, Caputo V et al (2010) Heterozygous germline mutations in the CBL tumor-suppressor gene cause a Noonan syndrome-like phenotype. Am J Hum Genet 87:250–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Niemeyer CM, Kang MW, Shin DH, Furlan I, Erlacher M, Bunin NJ, Bunda S et al (2010) Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia. Nat Genet 42:794–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Leung GKC, Luk HM, Tang VHM, Gao WW, Mak CCY, Yu MHC, Wong WL, Chu YWY, Yang WL, Wong WHS, Ma ACH, Leung AYH, ** DY, Chan KYK, Allanson J, Lo IFM, Chung BHY (2018) Integrating functional analysis in the next-generation sequencing diagnostic pipeline of RASopathies. Sci Rep 8:2421

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gelb BD, Tartaglia M (2011) RAS signaling pathway mutations and hypertrophic cardiomyopathy: getting into and out of the thick of it. J Clin Invest 121:844–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen PC, Wakimoto H, Conner D, Araki T, Yuan T, Roberts A, Seidman C, Bronson R, Neel B, Seidman JG, Kucherlapati R (2010) Activation of multiple signaling pathways causes developmental defects in mice with a Noonan syndrome-associated Sos1 mutation. J Clin Invest 120:4353–4365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wu X, Simpson J, Hong JH, Kim KH, Thavarajah NK, Backx PH, Neel BG, Araki T (2011) MEK-ERK pathway modulation ameliorates disease phenotypes in a mouse model of Noonan syndrome associated with the Raf 1(L613V) mutation. J Clin Invest 121:1009–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Calcagni G, Adorisio R, Martinelli S, Grutter G, Baban A, Versacci P, Digilio MC, Drago F, Gelb BD, Tartaglia M, Marino B (2018) Clinical presentation and natural history of hypertrophic cardiomyopathy in RASopathies. Heart Fail Clin 14:225–235

    Article  PubMed  Google Scholar 

  47. Dori Y, Smith C, Pinto E, Snyder K, March ME, Hakonarson H, Belasco J (2020) Severe lymphatic disorder resolved with MEK inhibition in a patient with Noonan syndrome and SOS1 mutation. Pediatrics 146

Download references

Acknowledgements

We cordially thank the families for their cooperation.

Author information

Authors and Affiliations

Authors

Contributions

GP, AP and EB conducted material preparation, and wrote of the manuscript. Patient’s stratification was performed by SK-TZ, KK, AP, CK-G and VP. AP wrote the first draft of the manuscript and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Anna Papadopoulou.

Ethics declarations

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki and its later amendments. Medical ethical approval was granted by the local medical ethics committee of Attikon University general hospital with the file number (4492/16.07.2019).

Consent to participate

Written informed consent was obtained from the participants or/and the parents of the participating children, as well as patients’ assess where applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Peter de Winter

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 43 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papadopoulos, G., Papadopoulou, A., Kosma, K. et al. Molecular and clinical profile of patients referred as Noonan or Noonan-like syndrome in Greece: a cohort of 86 patients. Eur J Pediatr 181, 3691–3700 (2022). https://doi.org/10.1007/s00431-022-04574-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-022-04574-w

Keywords

Navigation