Log in

Anatomical and functional connectomes underlying hierarchical visual processing in mouse visual system

  • Review
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Over the last 10 years, there has been a surge in interest in the rodent visual system resulting from the discovery of visual processing functions shared with primates V1, and of a complex anatomical structure in the extrastriate visual cortex. This surprisingly intricate visual system was elucidated by recent investigations using rapidly growing genetic tools primarily available in the mouse. Here, we examine the structural and functional connections of visual areas that have been identified in mice mostly during the past decade, and the impact of these findings on our understanding of brain functions associated with vision. Special attention is paid to structure–function relationships arising from the hierarchical organization, which is a prominent feature of the primate visual system. Recent evidence supports the existence of a hierarchical organization in rodents that contains levels that are poorly resolved relative to those observed in primates. This shallowness of the hierarchy indicates that the mouse visual system incorporates abundant non-hierarchical processing. Thus, the mouse visual system provides a unique opportunity to study non-hierarchical processing and its relation to hierarchical processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

adapted from Felleman and Van Essen (1991)) and mice (adapted from Gămănuţ et al. 2018), at the same scale. In macaque cortex, areas V1 and V2 were separated along their border during flattening. B The flattened neocortex of mice (same as in panel A), magnified ten times. In both panels, the coloured areas represent visual areas, while the white areas are non-visual areas. The areas coloured in orange belong to the ventral stream, while the areas coloured in blue are in the dorsal stream. The purple areas are other visual areas

Fig. 2

Modified from Vezoli et al. (2021). B, C Modified from Siegle et al. (2021)

Fig. 3

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  • Allman J, Kaas J (1974) The organization of the second visual area (V II) in the owl monkey: a second order transformation of the visual hemifield. Brain Res 76:247–265

    Article  CAS  PubMed  Google Scholar 

  • Andermann ML, Kerlin AM, Roumis DK, Glickfeld LL, Reid RC (2011) Functional specialization of mouse higher visual cortical areas. Neuron 72:1025–1039

    Article  CAS  PubMed  Google Scholar 

  • Baden T, Berens P, Franke K, Román Rosón M, Bethge M, Euler T (2016) The functional diversity of retinal ganglion cells in the mouse. Nature 529:345–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bashivan P, Kar K, DiCarlo JJ (2019) Neural population control via deep image synthesis. Science 364:eaav436

    Article  CAS  Google Scholar 

  • Bastos Andre M, Usrey WM, Adams Rick A, Mangun George R, Fries P, Friston KJ (2012) Canonical microcircuits for predictive coding. Neuron 76:695–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastos AM, Vezoli J, Bosman CA, Schoffelen JM, Oostenveld R et al (2015) Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron 85:390–401

    Article  CAS  PubMed  Google Scholar 

  • Beltramo R, Scanziani M (2019) A collicular visual cortex: neocortical space for an ancient midbrain visual structure. Science 363:64

    Article  CAS  PubMed  Google Scholar 

  • Bennett C, Gale SD, Garrett ME, Newton ML, Callaway EM et al (2019) Higher-order thalamic circuits channel parallel streams of visual information in mice. Neuron 102:477–92.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berman RA, Wurtz RH (2011) Signals conveyed in the Pulvinar pathway from superior colliculus to cortical area MT. J Neurosci 31:373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bickford ME, Zhou N, Krahe TE, Govindaiah G, Guido W (2015) Retinal and tectal “driver-like” inputs converge in the shell of the mouse dorsal lateral geniculate nucleus. J Neurosci 35:10523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blot A, Roth MM, Gasler I, Javadzadeh M, Imhof F, Hofer SB (2021) Visual intracortical and transthalamic pathways carry distinct information to cortical areas. Neuron 109:1996-2008.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bota M, Sporns O, Swanson LW (2015) Architecture of the cerebral cortical association connectome underlying cognition. Proc Natl Acad Sci USA 112:E2093–E2101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourne JA, Rosa MGP (2006) Hierarchical development of the primate visual cortex, as revealed by neurofilament immunoreactivity: early maturation of the middle temporal area (MT). Cereb Cortex 16:405–414

    Article  PubMed  Google Scholar 

  • Briggman KL, Helmstaedter M, Denk W (2011) Wiring specificity in the direction-selectivity circuit of the retina. Nature 471:183–188

    Article  CAS  PubMed  Google Scholar 

  • Caviness VS (1975) Architectonic map of neocortex of the normal mouse. J Comp Neurol 164:247–263

    Article  PubMed  Google Scholar 

  • Chaudhuri R, Knoblauch K, Gariel MA, Kennedy H, Wang XJ (2015) A large-scale circuit mechanism for hierarchical dynamical processing in the primate cortex. Neuron 88(2):419–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coogan TA, Burkhalter A (1993) Hierarchical organization of areas in rat visual cortex. J Neurosci 13:3749–3772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crick F, Koch C (1998) Constraints on cortical and thalamic projections: the no-strong-loops hypothesis. Nature 391:245–250

    Article  CAS  PubMed  Google Scholar 

  • D’Souza RD, Meier AM, Bista P, Wang Q, Burkhalter A (2016) Recruitment of inhibition and excitation across mouse visual cortex depends on the hierarchy of interconnecting areas. Elife 5:e19332

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Souza RD, Bista P, Meier AM, Ji W, Burkhalter A (2019) Spatial clustering of inhibition in mouse primary visual cortex. Neuron 104:588-600.e5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • D’Souza RD, Wang Q, Ji W, Meier AM, Kennedy H, et al (2020) Canonical and noncanonical features of the mouse visual cortical hierarchy. bioRxiv: 2020.03.30.016303

  • de Vries SEJ, Lecoq JA, Buice MA, Groblewski PA, Ocker GK et al (2020) A large-scale standardized physiological survey reveals functional organization of the mouse visual cortex. Nat Neurosci 23:138–151

    Article  PubMed  CAS  Google Scholar 

  • Desimone R, Ungerleider LG (1989) Neural mechanisms of visual processing in monkeys. In: Boiler F, Graman J (eds) Handbook of neuropsychology. Elsevier, Amsterdam, pp 267–299

    Google Scholar 

  • DiCarlo JJ, Zoccolan D, Rust NC (2012) How does the brain solve visual object recognition? Neuron 73:415–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding S-L (2013) Comparative anatomy of the prosubiculum, subiculum, presubiculum, postsubiculum, and parasubiculum in human, monkey, and rodent. J Comp Neurol 521:4145–4162

    Article  PubMed  Google Scholar 

  • Dräger UC (1975) Receptive fields of single cells and topography in mouse visual cortex. J Comp Neurol 160:269–289

    Article  PubMed  Google Scholar 

  • Elston GN, Rosa MG (1998) Morphological variation of layer III pyramidal neurones in the occipitotemporal pathway of the macaque monkey visual cortex. Cereb Cortex 8:278–294

    Article  CAS  PubMed  Google Scholar 

  • Elston GN, Elston A, Freire MAM, Gomes Leal W, Dias IA et al (2006) Specialization of pyramidal cell structure in the visual areas V1, V2 and V3 of the South American rodent, Dasyprocta primnolopha. Brain Res 1106:99–110

    Article  CAS  PubMed  Google Scholar 

  • Ercsey-Ravasz M, Markov NT, Lamy C, Van Essen DC, Knoblauch K et al (2013) A predictive network model of cerebral cortical connectivity based on a distance rule. Neuron 80:184–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang Q, Chou X-l, Peng B, Zhong W, Zhang LI, Tao HW (2020) A differential circuit via Retino-Colliculo-Pulvinar pathway enhances feature selectivity in visual cortex through surround suppression. Neuron 105:355–69.e6

    Article  CAS  PubMed  Google Scholar 

  • Fehérvári TD, Yagi T (2016) Population response propagation to extrastriate areas evoked by intracortical electrical stimulation in V1. Front Neural Circuits 10:6. https://doi.org/10.3389/fncir.2016.00006

    Article  PubMed  PubMed Central  Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    Article  CAS  PubMed  Google Scholar 

  • Fried SI, Münch TA, Werblin FS (2002) Mechanisms and circuitry underlying directional selectivity in the retina. Nature 420:411–414

    Article  CAS  PubMed  Google Scholar 

  • Funamizu A, Kuhn B, Doya K (2016) Neural substrate of dynamic Bayesian inference in the cerebral cortex. Nat Neurosci 19:1682–1689

    Article  CAS  PubMed  Google Scholar 

  • Gămănuţ R, Kennedy H, Toroczkai Z, Ercsey-Ravasz M, Van Essen DC et al (2018) The mouse cortical connectome, characterized by an ultra-dense cortical graph, maintains specificity by distinct connectivity profiles. Neuron 97:698-715.e10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garrett ME, Nauhaus I, Marshel JH, Callaway EM (2014) Topography and areal organization of mouse visual cortex. J Neurosci 34:12587–12600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glickfeld LL, Andermann ML, Bonin V, Reid RC (2013) Cortico-cortical projections in mouse visual cortex are functionally target specific. Nat Neurosci 16:219–226

    Article  CAS  PubMed  Google Scholar 

  • Glickfeld LL, Olsen SR (2017) Higher-order areas of the mouse visual cortex. Ann Rev Vision Sci 3:251–273

    Article  Google Scholar 

  • Grill-Spector K, Kushnir T, Hendler T, Edelman S, Itzchak Y, Malach R (1998) A sequence of object-processing stages revealed by fMRI in the human occipital lobe. Hum Brain Mapp 6:316–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo ZV, Inagaki HK, Daie K, Druckmann S, Gerfen CR, Svoboda K (2017) Maintenance of persistent activity in a frontal thalamocortical loop. Nature 545:181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez C, Cola MG, Seltzer B, Cusick C (2000) Neurochemical and connectional organization of the dorsal pulvinar complex in monkeys. J Comp Neurol 419:61–86

    Article  CAS  PubMed  Google Scholar 

  • Hafting T, Fyhn M, Molden S, Moser M-B, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Kebschull JM, Campbell RAA, Cowan D, Imhof F et al (2018) The logic of single-cell projections from visual cortex. Nature 556(7699):51–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hargreaves EL, Rao G, Lee I, Knierim JJ (2005) Major dissociation between medial and lateral entorhinal input to dorsal hippocampus. Science 308:1792

    Article  CAS  PubMed  Google Scholar 

  • Harris JA, Mihalas S, Hirokawa KE, Whitesell JD, Choi H et al (2019) Hierarchical organization of cortical and thalamic connectivity. Nature 575:195–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harting JK, Huerta MF, Hashikawa T, van Lieshout DP (1991) Projection of the mammalian superior colliculus upon the dorsal lateral geniculate nucleus: organization of tectogeniculate pathways in nineteen species. J Comp Neurol 304:275–306

    Article  CAS  PubMed  Google Scholar 

  • Harvey CD, Coen P, Tank DW (2012) Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature 484:62–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilgetag CC, Goulas A (2020) ‘Hierarchy’ in the organization of brain networks. Philos Transact R Soc B 375:20190319

    Article  Google Scholar 

  • Hilgetag CC, Burns GAPC, O’Neill MA, Scannell JW, Young MP (2000) Anatomical connectivity defines the organization of clusters of cortical areas in the macaque and the cat. Philos Transact R Soc Lond Ser B 355:91–110

    Article  CAS  Google Scholar 

  • Horvát S, Gămănuț R, Ercsey-Ravasz M, Magrou L, Gămănuț B et al (2016) Spatial embedding and wiring cost constrain the functional layout of the cortical network of rodents and primates. PLoS Biol 14:e1002512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang L, Kebschull JM, Fürth D, Musall S, Kaufman MT et al (2020) BRICseq bridges brain-wide interregional connectivity to neural activity and gene expression in single animals. Cell 182:177–88.e27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itokazu T, Hasegawa M, Kimura R, Osaki H, Albrecht U-R et al (2018) Streamlined sensory motor communication through cortical reciprocal connectivity in a visually guided eye movement task. Nat Commun 9:338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ji W, Gămănuţ R, Bista P, D’Souza Rinaldo D, Wang Q, Burkhalter A (2015) Modularity in the organization of mouse primary visual cortex. Neuron 87:632–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juavinett Ashley L, Callaway EM (2015) Pattern and component motion responses in mouse visual cortical areas. Curr Biol 25:1759–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juavinett AL, Nauhaus I, Garrett ME, Zhuang J, Callaway EM (2017) Automated identification of mouse visual areas with intrinsic signal imaging. Nat Protoc 12:32–43

    Article  CAS  PubMed  Google Scholar 

  • Kaas JH, Lyon DC (2007) Pulvinar contributions to the dorsal and ventral streams of visual processing in primates. Brain Res Rev 55:285–296

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaas JH, Krubitzer LA, Johanson KL (1989) Cortical connections of areas 17 (V–I) and 18 (V–II) of squirrels. J Comp Neurol 281:426–446

    Article  CAS  PubMed  Google Scholar 

  • Kaliukhovich DA, Op de Beeck H (2018) Hierarchical stimulus processing in rodent primary and lateral visual cortex as assessed through neuronal selectivity and repetition suppression. J Neurophysiol 120:926–941

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawato M, Hayakawa H, Inui T (1993) A forward-inverse optics model of reciprocal connections between visual cortical areas. Network 4:415–422

    Article  Google Scholar 

  • Keller GB, Mrsic-Flogel TD (2018) Predictive processing: a canonical cortical computation. Neuron 100:424–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khawaja FA, Liu LD, Pack CC (2013) Responses of MST neurons to plaid stimuli. J Neurophysiol 110:63–74

    Article  PubMed  Google Scholar 

  • Kim Euiseok J, Juavinett Ashley L, Kyubwa Espoir M, Jacobs Matthew W, Callaway EM (2015) Three types of cortical layer 5 neurons that differ in brain-wide connectivity and function. Neuron 88:1253–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim M-H, Znamenskiy P, Iacaruso MF, Mrsic-Flogel TD (2018) Segregated subnetworks of intracortical projection neurons in primary visual cortex. Neuron 100:1313–21.e6

    Article  CAS  PubMed  Google Scholar 

  • Kirchgessner MA, Franklin AD, Callaway EM (2021) Distinct “driving” versus “modulatory” influences of different visual corticothalamic pathways. bioRxiv: 2021.03.30.437715

  • Kravitz DJ, Saleem KS, Baker CI, Mishkin M (2011) A new neural framework for visuospatial processing. Nat Rev Neurosci 12:217–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krumin M, Lee JJ, Harris KD, Carandini M (2018) Decision and navigation in mouse parietal cortex. Elife 7:e42583

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamme VAF, Roelfsema PR (2000) The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci 23:571–579

    Article  CAS  PubMed  Google Scholar 

  • Laramee ME, Boire D (2014) Visual cortical areas of the mouse: comparison of parcellation and network structure with primates. Front Neural Circuits 8:149

    PubMed  Google Scholar 

  • Leinweber M, Ward DR, Sobczak JM, Attinger A, Keller GB (2017) A sensorimotor circuit in mouse cortex for visual flow predictions. Neuron 95:1420–32.e5

    Article  CAS  PubMed  Google Scholar 

  • Li Y-t, Ibrahim LA, Liu B-h, Zhang LI, Tao HW (2013) Linear transformation of thalamocortical input by intracortical excitation. Nat Neurosci 16:1324–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lien AD, Scanziani M (2013) Tuned thalamic excitation is amplified by visual cortical circuits. Nat Neurosci 16:1315–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CS, Kaas JH (1979) The inferior pulvinar complex in owl monkeys: architectonic subdivisions and patterns of input from the superior colliculus and subdivisions of visual cortex. J Comp Neurol 187:655–678

    Article  CAS  PubMed  Google Scholar 

  • Lu W, Chen S, Chen X, Hu J, Xuan A, Ding S-L (2020) Localization of area prostriata and its connections with primary visual cortex in rodent. J Comp Neurol 528:389–406

    Article  PubMed  Google Scholar 

  • Lyamzin D, Benucci A (2019) The mouse posterior parietal cortex: anatomy and functions. Neurosci Res 140:14–22

    Article  PubMed  Google Scholar 

  • Macé E, Montaldo G, Cohen I, Baulac M, Fink M, Tanter M (2011) Functional ultrasound imaging of the brain. Nat Methods 8:662–664

    Article  PubMed  CAS  Google Scholar 

  • Manita S, Suzuki T, Homma C, Matsumoto T, Odagawa M et al (2015) A top-down cortical circuit for accurate sensory perception. Neuron 86:1304–1316

    Article  CAS  PubMed  Google Scholar 

  • Markov NT, Ercsey-Ravasz MM, Ribeiro Gomes AR, Lamy C, Magrou L et al (2014a) A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb Cortex 24:17–36

    Article  CAS  PubMed  Google Scholar 

  • Markov NT, Vezoli J, Chameau P, Falchier A, Quilodran R et al (2014b) Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex. J Comp Neurol 522:225–259

    Article  PubMed  Google Scholar 

  • Marques T, Summers MT, Fioreze G, Fridman M, Dias RF et al (2018) A role for mouse primary visual cortex in motion perception. Curr Biol 28:1703–13.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marr D (1982) Vision: a computational investigation into the human representation and processing of visual information. W.H. Freeman and Company, San Francisco

    Google Scholar 

  • Marshel JH, Garrett ME, Nauhaus I, Callaway EM (2011) Functional specialization of seven mouse visual cortical areas. Neuron 72:1040–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshel James H, Kaye Alfred P, Nauhaus I, Callaway EM (2012) Anterior-posterior direction opponency in the superficial mouse lateral geniculate nucleus. Neuron 76:713–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsui T, Ohki K (2012) Target dependence of orientation and direction selectivity of corticocortical projection neurons in the mouse V1. Front Neural Circuits 7:143–243

    Google Scholar 

  • Matteucci G, Bellacosa Marotti R, Riggi M, Rosselli FB, Zoccolan D (2019) Nonlinear processing of shape information in rat lateral extrastriate cortex. J Neurosci 39:1649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meier AM, Wang Q, Ji W, Ganachaud J, Burkhalter A (2021) Modular network between postrhinal visual cortex, amygdala and entorhinal cortex. J Neurosci 41(22):4809–4825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milner AD, Goodale MA (1993) Visual pathways to perception and action. Prog Brain Res 95:317–337

    Article  CAS  PubMed  Google Scholar 

  • Mishkin M, Ungerleider LG, Macko KA (1983) Object vision and spatial vision: two cortical pathways. Trends Neurosci 6:414–417

    Article  Google Scholar 

  • Mohajerani MH, Chan AW, Mohsenvand M, LeDue J, Liu R et al (2013) Spontaneous cortical activity alternates between motifs defined by regional axonal projections. Nat Neurosci 16:1426–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montero VM (1993) Retinotopy of cortical connections between the striate cortex and extrastriate visual areas in the rat. Exp Brain Res 94:1–15

    Article  CAS  PubMed  Google Scholar 

  • Morcos AS, Harvey CD (2016) History-dependent variability in population dynamics during evidence accumulation in cortex. Nat Neurosci 19:1672–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Movshon JA, Newsome WT (1996) Visual response properties of striate cortical neurons projecting to area MT in Macaque monkeys. J Neurosci 16:7733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Movshon J, Adelson EH, Gizzi MS, Newsome WT (1985) The analysis of moving visual patterns. In: Chagas C, Gattass R, Gross C (eds) Pattern recognition mechanisms. Pontificiae Academiae Scientiarum Scripta Varia. Vatican Press, Rome, pp 117–151

    Chapter  Google Scholar 

  • Muir D, Roth M, Helmchen F, Kampa B (2015) Model-based analysis of pattern motion processing in mouse primary visual cortex. Front Neural Circuits 9:38. https://doi.org/10.3389/fncir.2015.00038

    Article  PubMed  PubMed Central  Google Scholar 

  • Mundinano I-C, Kwan WC, Bourne JA (2019) Retinotopic specializations of cortical and thalamic inputs to area MT. Proc Natl Acad Sci 116:23326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami T, Yoshida T, Matsui T, Ohki K (2015) Wide-field Ca2+ imaging reveals visually evoked activity in the retrosplenial area. Front Mol Neurosci 8:20. https://doi.org/10.3389/fnmol.2015.00020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murgas KA, Wilson AM, Michael V, Glickfeld LL (2020) Unique spatial integration in mouse primary visual cortex and higher visual areas. J Neurosci 40:1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naselaris T, Kay KN, Nishimoto S, Gallant JL (2011) Encoding and decoding in fMRI. Neuroimage 56:400–410

    Article  PubMed  Google Scholar 

  • Nassi JJ, Callaway EM (2009) Parallel processing strategies of the primate visual system. Nat Rev Neurosci 10:360–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nath A, Schwartz GW (2016) Cardinal orientation selectivity is represented by two distinct ganglion cell types in mouse retina. J Neurosci 36:3208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negwer M, Liu Y-J, Schubert D, Lyon DC (2017) V1 connections reveal a series of elongated higher visual areas in the California ground squirrel, Otospermophilus beecheyi. J Comp Neurol 525:1909–1921

    Article  CAS  PubMed  Google Scholar 

  • Niell CM, Stryker MP (2008) Highly selective receptive fields in mouse visual cortex. J Neurosci 28:7520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimoto S, Vu An T, Naselaris T, Benjamini Y, Yu B, Gallant JL (2011) Reconstructing visual experiences from brain activity evoked by natural movies. Curr Biol 21:1641–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh SW, Harris JA, Ng L, Winslow B, Cain N et al (2014) A mesoscale connectome of the mouse brain. Nature 508:207–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olavarria J, Montero VM (1989) Organization of visual cortex in the mouse revealed by correlating callosal and striate-extrastriate connections. Vis Neurosci 3:59–69

    Article  CAS  PubMed  Google Scholar 

  • Palagina G, Meyer JF, Smirnakis SM (2017) Complex visual motion representation in mouse area V1. J Neurosci 37:164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer SM, Rosa MG (2006) Quantitative analysis of the corticocortical projections to the middle temporal area in the marmoset monkey: evolutionary and functional implications. Cereb Cortex 16:1361–1375

    Article  PubMed  Google Scholar 

  • Payne JN (1987) Comparisons between the use of true blue and diamidino yellow as retrograde fluorescent tracers. Exp Brain Res 68:631–642

    Article  CAS  PubMed  Google Scholar 

  • Peters AJ, Fabre JMJ, Steinmetz NA, Harris KD, Carandini M (2021) Striatal activity topographically reflects cortical activity. Nature 591(7850):420–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piscopo DM, El-Danaf RN, Huberman AD, Niell CM (2013) Diverse visual features encoded in mouse lateral geniculate nucleus. J Neurosci 33:4642–4656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polack P-O, Contreras D (2012) Long-range parallel processing and local recurrent activity in the visual cortex of the mouse. J Neurosci 32:11120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponce CR, Lomber SG, Born RT (2008) Integrating motion and depth via parallel pathways. Nat Neurosci 11:216–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Priebe NJ (2016) Mechanisms of orientation selectivity in the primary visual cortex. Ann Rev vis Sci 2:85–107

    Article  Google Scholar 

  • Prusky GT, West PWR, Douglas RM (2000) Behavioral assessment of visual acuity in mice and rats. Vision Res 40:2201–2209

    Article  CAS  PubMed  Google Scholar 

  • Raiguel S, Van Hulle MM, **ao DK, Marcar VL, Lagae L, Orban GA (1997) Size and shape of receptive fields in the medial superior temporal area (MST) of the macaque. NeuroReport 8(12):2803–2808

    Article  CAS  PubMed  Google Scholar 

  • Rainer G, Miller EK (2002) Timecourse of object-related neural activity in the primate prefrontal cortex during a short-term memory task. Eur J Neurosci 15:1244–1254

    Article  PubMed  Google Scholar 

  • Rao RPN, Ballard DH (1999) Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci 2:79–87

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen R, Matsumoto A, Dahlstrup Sietam M, Yonehara K (2020) A segregated cortical stream for retinal direction selectivity. Nat Commun 11:831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reid RC, Alonso J-M (1995) Specificity of monosynaptic connections from thalamus to visual cortex. Nature 378:281–284

    Article  CAS  PubMed  Google Scholar 

  • Richards BA, Lillicrap TP, Beaudoin P, Bengio Y, Bogacz R et al (2019) A deep learning framework for neuroscience. Nat Neurosci 22:1761–1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ringo JL (1991) Neuronal interconnection as a function of brain size. Brain Behav Evol 38:1–6

    Article  CAS  PubMed  Google Scholar 

  • Rockland KS, Pandya DN (1979) Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res 179:3–20

    Article  CAS  PubMed  Google Scholar 

  • Rosa MGP, Krubitzer LA (1999) The evolution of visual cortex: where is V2? Trends Neurosci 22:242–248

    Article  CAS  PubMed  Google Scholar 

  • Rossi LF, Harris KD, Carandini M (2020) Spatial connectivity matches direction selectivity in visual cortex. Nature 588(7839):648–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth MM, Dahmen JC, Muir DR, Imhof F, Martini FJ, Hofer SB (2016) Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex. Nat Neurosci 19:299–307

    Article  CAS  PubMed  Google Scholar 

  • Runyan CA, Piasini E, Panzeri S, Harvey CD (2017) Distinct timescales of population coding across cortex. Nature 548:92–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saalmann YB, Kastner S (2015) The cognitive thalamus. Front Syst Neurosci 9:39. https://doi.org/10.3389/fnsys.2015.00039

    Article  PubMed  PubMed Central  Google Scholar 

  • Saalmann YB, Pinsk MA, Wang L, Li X, Kastner S (2012) The pulvinar regulates information transmission between cortical areas based on attention demands. Science 337:753–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saleem AB (2020) Two stream hypothesis of visual processing for navigation in mouse. Curr Opin Neurobiol 64:70–78

    Article  CAS  PubMed  Google Scholar 

  • Scholl B, Tan AYY, Corey J, Priebe NJ (2013) Emergence of orientation selectivity in the mammalian visual pathway. J Neurosci 33:10616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sidorov MS, Kim H, Rougie M, Williams B, Siegel JJ et al (2020) Visual sequences drive experience-dependent plasticity in mouse anterior cingulate cortex. Cell Rep 32:108152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegle JH, Jia X, Durand S, Gale S, Bennett C et al (2021) Survey of spiking in the mouse visual system reveals functional hierarchy. Nature 592(7852):86–92

    Article  CAS  PubMed  Google Scholar 

  • Sit KK, Goard MJ (2020) Distributed and retinotopically asymmetric processing of coherent motion in mouse visual cortex. Nat Commun 11:3565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stansbury Dustin E, Naselaris T, Gallant JL (2013) Natural scene statistics account for the representation of scene categories in human visual cortex. Neuron 79:1025–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepniewska I, Qi H-X, Kaas JH (2000) Projections of the superior colliculus to subdivisions of the inferior pulvinar in new world and old world monkeys. Vis Neurosci 17:529–549

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Tan Z, Mensh BD, Ji N (2016) Thalamus provides layer 4 of primary visual cortex with orientation- and direction-tuned inputs. Nat Neurosci 19:308–315

    Article  CAS  PubMed  Google Scholar 

  • Tafazoli S, Safaai H, De Franceschi G, Rosselli FB, Vanzella W et al (2017) Emergence of transformation-tolerant representations of visual objects in rat lateral extrastriate cortex. Elife 6:e22794

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka K (1983) Cross-correlation analysis of geniculostriate neuronal relationships in cats. J Neurophysiol 49:1303–1318

    Article  CAS  PubMed  Google Scholar 

  • Theodoni P, Majka P, Reser DH, Wójcik DK, Rosa MGP, Wang X-J (2021) Structural attributes and principles of the neocortical connectome in the marmoset monkey. Cereb Cortex. https://doi.org/10.1093/cercor/bhab191

  • Tohmi M, Meguro R, Tsukano H, Hishida R, Shibuki K (2014) The extrageniculate visual pathway generates distinct response properties in the higher visual areas of mice. Curr Biol 24:587–597

    Article  CAS  PubMed  Google Scholar 

  • Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Cambridge, pp 549–586

    Google Scholar 

  • Urban A, Dussaux C, Martel G, Brunner C, Mace E, Montaldo G (2015) Real-time imaging of brain activity in freely moving rats using functional ultrasound. Nat Methods 12:873–878

    Article  CAS  PubMed  Google Scholar 

  • Van Hooser SD, Nelson SB (2006) The squirrel as a rodent model of the human visual system. Vis Neurosci 23:765–778

    Article  PubMed  Google Scholar 

  • Vermaercke B, Gerich FJ, Ytebrouck E, Arckens L, Beeck HPOd, Bergh GVd (2014) Functional specialization in rat occipital and temporal visual cortex. J Neurophysiol 112:1963–1983

    Article  PubMed  PubMed Central  Google Scholar 

  • Vezoli J, Magrou L, Goebel R, Wang X-J, Knoblauch K et al (2021) Cortical hierarchy, dual counterstream architecture and the importance of top-down generative networks. Neuroimage 225:117479

    Article  PubMed  Google Scholar 

  • Vidyasagar TR, Eysel UT (2015) Origins of feature selectivities and maps in the mammalian primary visual cortex. Trends Neurosci 38:475–485

    Article  CAS  PubMed  Google Scholar 

  • Vidyasagar TR, Pei X, Volgushev M (1996) Multiple mechanisms underlying the orientation selectivity of visual cortical neurones. Trends Neurosci 19:272–277

    Article  CAS  PubMed  Google Scholar 

  • Vinken K, Van den Bergh G, Vermaercke B, Op de Beeck HP (2016) Neural representations of natural and scrambled movies progressively change from rat striate to temporal cortex. Cereb Cortex 26:3310–3322

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogels R (1999) Categorization of complex visual images by rhesus monkeys. Part 2: single-cell study. Eur J Neurosci 11:1239–1255

    Article  CAS  PubMed  Google Scholar 

  • Wagor E, Mangini NJ, Pearlman AL (1980) Retinotopic organization of striate and extrastriate visual cortex in the mouse. J Comp Neurol 193:187–202

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Burkhalter A (2007) Area map of mouse visual cortex. J Comp Neurol 502:339–357

    Article  PubMed  Google Scholar 

  • Wang Q, Burkhalter A (2013) Stream-related preferences of inputs to the superior colliculus from areas of dorsal and ventral streams of mouse visual cortex. J Neurosci 33:1696–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Gao E, Burkhalter A (2011) Gateways of ventral and dorsal streams in mouse visual cortex. J Neurosci 31:1905–1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Sporns O, Burkhalter A (2012) Network analysis of corticocortical connections reveals ventral and dorsal processing streams in mouse visual cortex. J Neurosci 32:4386–4399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warner Claire E, Kwan William C, Wright D, Johnston Leigh A, Egan Gary F, Bourne JA (2015) Preservation of vision by the Pulvinar following early-life primary visual cortex lesions. Curr Biol 25:424–434

    Article  CAS  PubMed  Google Scholar 

  • Watakabe A, Hirokawa J (2018) Cortical networks of the mouse brain elaborate within the gray matter. Brain Struct Funct 223:3633–3652

    Article  PubMed  Google Scholar 

  • Yamins DLK, Hong H, Cadieu CF, Solomon EA, Seibert D, DiCarlo JJ (2014) Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proc Natl Acad Sci 111:8619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young H, Belbut B, Baeta M, Petreanu L (2021) Laminar-specific cortico-cortical loops in mouse visual cortex. Elife 10:59551

    Article  Google Scholar 

  • Yu H-H, Chaplin Tristan A, Davies Amanda J, Verma R, Rosa Marcello GP (2012) A specialized area in limbic cortex for fast analysis of peripheral vision. Curr Biol 22:1351–1357

    Article  CAS  PubMed  Google Scholar 

  • Zeki S, Shipp S (1988) The functional logic of cortical connections. Nature 335:311–317

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Chen H, Liu X, Cang J (2013) Orientation-selective responses in the mouse lateral geniculate nucleus. J Neurosci 33:12751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou NA, Maire PS, Masterson SP, Bickford ME (2017) The mouse pulvinar nucleus: organization of the tectorecipient zones. Vis Neurosci 34:E011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang J, Ng L, Williams D, Valley M, Li Y et al (2017) An extended retinotopic map of mouse cortex. Elife 6:e18372

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Henry Kennedy, Andreas Burkhalter, Marcello Rosa, Federico Rossi and David Reser for helpful comments and suggestions.

Funding

RG: DE190100157 (Australian Research Council).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Shimaoka.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gămănuţ, R., Shimaoka, D. Anatomical and functional connectomes underlying hierarchical visual processing in mouse visual system. Brain Struct Funct 227, 1297–1315 (2022). https://doi.org/10.1007/s00429-021-02415-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-021-02415-4

Keywords

Navigation