Log in

Tyrosine hydroxylase localization in the nucleus accumbens in schizophrenia

  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The nucleus accumbens (NAcc) has been implicated in schizophrenia (SZ) pathology, based on antipsychotic action therein. However, recent imaging studies suggest that the NAcc may not be a locus of dopamine dysregulation in SZ. This study examined postmortem human tissue to determine if abnormalities are present in dopamine synthesis in the NAcc in SZ. We compared the immunohistochemical localization of tyrosine hydroxylase (TH), the rate-limiting synthesizing enzyme of dopamine, in postmortem tissue from SZ subjects and demographically matched controls. To study the effects of chronic antipsychotic drug (APD) treatment on TH immunolabeling in the NAcc, rats were treated for 6 months with haloperidol or olanzapine. In the NAcc, TH immunolabeling was similar in control and SZ subjects, in both the core and shell. Rats had similar TH optical density levels across treatment groups in both the core and shell. Similar levels of TH suggest DA synthesis may be normal. These findings provide further insight into the role of the NAcc in SZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akil M, Edgar CL, Pierri JN, Casali S, Lewis DA (2000) Decreased density of tyrosine hydroxylase-immunoreactive axons in the entorhinal cortex of schizophrenic subjects. Biol Psychiatry 47(5):361–370

    Article  CAS  PubMed  Google Scholar 

  • Bacopoulos N, Bhatnagar R (1977) Correlation between tyrosine hydroxylase activity and catecholamine concentration or turnover in brain regions. J Neurochem 29:639–643

    Article  CAS  PubMed  Google Scholar 

  • Ballmaier M, Schlagenhauf F, Toga AW, Gallinat J, Koslowski M, Zoli M, Hojatkashani C, Narr KL, Heinz A (2008) Regional patterns and clinical correlates of basal ganglia morphology in non-medicated schizophrenia. Schizophr Res 106(2–3):140–147

    Article  PubMed  PubMed Central  Google Scholar 

  • Beckmann H, Lauer M (1997) The human striatum in schizophrenia. II. Increased number of striatal neurons in schizophrenics. Psychiatr Res 68(2-3):99–109

    Article  CAS  Google Scholar 

  • Betarbet R, Turner R, Chockkan V, DeLong MR, Allers KA, Walters J, Levey AI, Greenamyre JT (1997) Dopaminergic neurons intrinsic to the primate striatum. J Neurosci 17(17):6761–6768

    CAS  PubMed  Google Scholar 

  • Bird ED, Spokes EG, Iversen LL (1979) Increased dopamine concentration in limbic areas of brain from patients dying with schizophrenia. Brain 102:347–360

    Article  CAS  PubMed  Google Scholar 

  • Blaha CD, Yang CR, Floresco SB, Barr AM, Phillips AG (1997) Stimulation of the ventral subiculum of the hippocampus evokes glutamate receptor-mediated changes in dopamine efflux in the rat nucleus accumbens. Eur J Neurosci 9:902–911

    Article  CAS  PubMed  Google Scholar 

  • Bocklisch C, Pascoli V, Wong J, House D, Yvon C, Roo M et al (2013) Cocaine disinhibits dopamine neurons by potentiation of GABA transmission in the ventral tegmental area. Science 341:1521–1525

    Article  CAS  PubMed  Google Scholar 

  • Boley AM, Perez SM, Lodge DJ (2014) A fundamental role for hippocampal parvalbumin in the dopamine hyperfunction associated with schizophrenia. Schizophr Res 157:238–243

    Article  PubMed  PubMed Central  Google Scholar 

  • Brauer K, Häußer M, Härtig W, Arendt T (2000) The core–shell dichotomy of nucleus accumbens in the rhesus monkey as revealed by double-immunofluorescence and morphology of cholinergic interneurons. Brain Res 858:151–162

    Article  CAS  PubMed  Google Scholar 

  • Crow TJ, Baker HF, Cross AJ, Joseph MH, Lofthouse R, Longden A et al (1979) Monoamine mechanisms in chronic schizophrenia: post-mortem neurochemical findings. Br J Psych 134:249–256

    Article  CAS  Google Scholar 

  • Demjaha A, Murray R, McGuire P, Kapur S, Howes O (2012) Dopamine synthesis capacity in patients with treatment-resistant schizophrenia. Am J Psychiatry 169:1203–1210

    Article  PubMed  Google Scholar 

  • Deutch AY, Cameron DS (1992) Pharmacological characterization of dopamine systems in the nucleus accumbens core and shell. Neuroscience 46:49–56

    Article  CAS  PubMed  Google Scholar 

  • Deutch AY, Lee MC, Iadarola MJ (1992) Regionally specific effects of atypical antipsychotic drugs on striatal Fos expression: the nucleus accumbens shell as a locus of antipsychotic action. Mol Cell Neurosci 3:332–341

    Article  CAS  PubMed  Google Scholar 

  • Dubach M, Schmidt R, Kunkel D, Bowden DM, Martin R, German DC (1987) Primate neostriatal neurons containing tyrosine hydroxylase: immunohistochemical evidence. Neurosci Lett 75:205–210

    Article  CAS  PubMed  Google Scholar 

  • Ebdrup BH, Skimminge A, Rasmussen H, Aggernaes B, Oranje B, Lublin H, Baaré W, Glenthøj B (2010) Progressive striatal and hippocampal volume loss in initially antipsychotic-naive, first-episode schizophrenia patients treated with quetiapine: relationship to dose and symptoms. Int J Neuropsychopharmacol 14(1):69–82

    Article  CAS  PubMed  Google Scholar 

  • Fallon JH, Moore RY (1978) Catecholamine innervation of the basal forebrain IV: topography of the dopamine projection to the basal forebrain and neostriatum. J Comp Neurol 180:545–580

    Article  CAS  PubMed  Google Scholar 

  • Farley IJ, Price KS, Hornykiewicz O (1977) Dopamine in the limbic regions of the human brain: normal and abnormal. Adv Biochem Psychopharmacol 16:57–64

    CAS  PubMed  Google Scholar 

  • French S, Totterdell S (2004) Quantification of morphological differences in boutons from different afferent populations to the nucleus accumbens. Brain Res 1007:167–177

    Article  CAS  PubMed  Google Scholar 

  • Fusar-Poli P, Meyer-Lindenberg A (2013) Striatal presynaptic dopamine in schizophrenia, Part I: meta-analysis of dopamine active transporter (DAT) density. Schizophr Bull 39(1):22–32

    Article  PubMed  Google Scholar 

  • Grace A (2000) Gating of information flow within the limbic system and the pathophysiology of schizophrenia. Brain Res Rev 31:330–341

    Article  CAS  PubMed  Google Scholar 

  • Grace AA, Bunney BS (1985) Opposing effects of striatonigral feedback pathways on midbrain dopamine cell activity. Brain Res 333:271–284

    Article  CAS  PubMed  Google Scholar 

  • Gunduz H, Wu H, Ashtari M, Bogerts B, Crandall D, Robinson DG, Alvir J, Lieberman J, Kane J, Bilder R (2002) Basal ganglia volumes in first-episode schizophrenia and healthy comparison subjects. Biol Psychiatry 51(10):801–808

    Article  PubMed  Google Scholar 

  • Haber SN (2003) The primate basal ganglia: parallel and intergrative networks. J Chem Neuroanat 26(4):317–330

    Article  PubMed  Google Scholar 

  • Haber S, Fudge J, McFarland N (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20:2369–2382

    CAS  PubMed  Google Scholar 

  • Hefti F, Melamed E, Wurtman RJ (1980) Partial lesions of the dopaminergic nigrostriatal system in rat brain: biochemical characterization. Brain Res 195:123–137

    Article  CAS  PubMed  Google Scholar 

  • Hetey L, Schwitzkowsky R, Ott T, Barz H (1991) Diminished synaptosomal dopamine (DA) release and DA autoreceptor supersensitivity in schizophrenia. J Neural Transm Gen Sect 83(1–2):25–35

    Article  CAS  PubMed  Google Scholar 

  • Howes OD, Montgomery AJ, Asselin M-CC, Murray RM, Valli I, Tabraham P et al (2009) Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Arch Gen Pychiatry 66:13–20

    Article  Google Scholar 

  • Howes O, Bose S, Turkheimer F, Valli I, Egerton A, Valmaggia L et al (2011) Dopamine synthesis capacity before onset of psychosis: a prospective [18 F]-DOPA PET imaging study. Am J Psychiatry 168:1311–1317

    Article  PubMed  PubMed Central  Google Scholar 

  • Howes OD, Williams M, Ibrahim K, Leung G, Egerton A, McGuire PK, Turkheimer F (2013) Midbrain dopamine function in schizophrenia and depression: a post-mortem and positron emission tomographic imaging study. Brain 136(Pt 11):3242–3251

    Article  PubMed  PubMed Central  Google Scholar 

  • Kegeles L, Abi-Dargham A, Zea-Ponce Y, Rodenhiser-Hill J, Mann J, Heertum R et al (2000) Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications for schizophrenia. Biol Psychiatry 48:627–640

    Article  CAS  PubMed  Google Scholar 

  • Kegeles L, Abi-Dargham A, Frankle W, Gil R, Cooper T, Slifstein M et al (2010) Increased synaptic dopamine function in associative regions of the striatum in schizophrenia. Arch Gen Psychiatry 67:231–239

    Article  CAS  PubMed  Google Scholar 

  • Kreczmanski P, Heinsen H, Mantua V, Woltersdorf F, Masson T, Ulfig N, Schmidt-Kastner R, Korr H, Steinbusch HW, Hof PR, Schmitz C (2007) Volume, neuron density and total neuron number in five subcortical regions in schizophrenia. Brain 130(Pt 3):678–692

    Article  PubMed  Google Scholar 

  • Kuepper R, Skinbjerg M, Abi-Dargham A (2012) The dopamine dysfunction in schizophrenia revisited: new insights into topography and course. Handb Exp Pharmacol 212:1–26

    Article  CAS  Google Scholar 

  • Lahti AC, Holcomb HH, Weiler MA, Medoff DR, Tamminga CA (2003) Functional effects of antipsychotic drugs: comparing clozapine with haloperidol. Biol Psychiatry 53(7):601–608

    Article  CAS  PubMed  Google Scholar 

  • Lahti AC, Weiler MA, Medoff DR, Tamminga CA, Holcomb HH (2005) Functional effects of single dose first- and second-generation antipsychotic administration in subjects with schizophrenia. Psychiatry Res 139(1):19–30

    Article  CAS  PubMed  Google Scholar 

  • Lahti AC, Weiler MA, Holcomb HH, Tamminga CA, Cropsey KL (2009) Modulation of limbic circuitry predicts treatment response to antipsychotic medication: a functional imaging study in schizophrenia. Neuropsychopharmacology 34(13):2675–2690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauer M, Senitz D, Beckmann H (2001) Increased volume of the nucleus accumbens in schizophrenia. J Neural Transm 108(6):645–660

    Article  CAS  PubMed  Google Scholar 

  • Legault M, Wise RA (1999) Injections of N-methyl-d-aspartate into the ventral hippocampus increase extracellular dopamine in the ventral tegmental area and nucleus accumbens. Synapse 31:241–249

    Article  CAS  PubMed  Google Scholar 

  • Lodge D, Grace A (2007) Aberrant hippocampal activity underlies the dopamine dysregulation in an animal model of schizophrenia. J Neurosci 27:11424–11430

    Article  CAS  PubMed  Google Scholar 

  • Lodge D, Grace A (2011) Hippocampal dysregulation of dopamine system function and the pathophysiology of schizophrenia. Trends Pharmacol Sci 32:507–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackay AV, Iversen LL, Rossor M, Spokes E, Bird E, Arregui A et al (1982) Increased brain dopamine and dopamine receptors in schizophrenia. Arch Gen Psychiatry 39:991–997

    Article  CAS  PubMed  Google Scholar 

  • Marchese G, Casu M, Bartholini F, Ruiu S, Saba P, Gessa G et al (2002) Sub-chronic treatment with classical but not atypical antipsychotics produces morphological changes in rat nigro-striatal dopaminergic neurons directly related to “early onset” vacuous chewing. Eur J Neurosci 15:1187–1196

    Article  PubMed  Google Scholar 

  • Matthews M, Bondi C, Torres G, Moghaddam B (2013) Reduced presynaptic dopamine activity in adolescent dorsal striatum. Neuropsychopharmacology 38(7):1344–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCollum LA, Walker CK, McCullumsmith RE, Roberts RC (2014) Tyrosine hydroxylase levels in the caudate, putamen, and nucleus accumbens in postmortem schizophrenia (abstract). In: Society of Biological Psychiatry Annual Meeting; New York

  • McCollum LA, Walker CK, Roche JK, Roberts RC (2015) Elevated excitatory input to the nucleus accumbens in schizophrenia: a postmortem ultrastructural study. Schizophr Bull 41:1123–1132

    Article  PubMed  PubMed Central  Google Scholar 

  • Melendez-Ferro M, Rice MW, Roberts RC, Perez-Costas E (2012) Dual use of immunohistochemistry for film densitometry and light microscopy. J Neurosci Methods 208:86–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merchant K, Dorsa D (1993) Differential induction of neurotensin and c-fos gene expression by typical versus atypical antipsychotics. Proc Nat Acad Sci 90:3447–3451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meredith GE, Pattiselanno A, Groenewegen HJ, Haber SN (1996) Shell and core in monkey and human nucleus accumbens identified with antibodies to calbindin-D28k. J Comp Neurol 365:628–639

    Article  CAS  PubMed  Google Scholar 

  • Miller DW, Abercrombie ED (1996) Effects of MK-801 on spontaneous and amphetamine-stimulated dopamine release in striatum measured with in vivo microdialysis in awake rats. Brain Res Bull 40:57–62

    Article  CAS  PubMed  Google Scholar 

  • Miyake N, Thompson J, Skinbjerg M, Abi-Dargham A (2011) Presynaptic dopamine in schizophrenia. CNS Neurosci Ther 17:104–109

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell P, Grace AA (1995) Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input. J Neurosci 15:3622–3639

    PubMed  Google Scholar 

  • Owen F, Cross AJ, Crow TJ, Longden A, Poulter M, Riley GJ (1978) Increased dopamine-receptor sensitivity in schizophrenia. Lancet 2:223–226

    Article  CAS  PubMed  Google Scholar 

  • Pakkenberg B (1990) Pronounced reduction of total neuron number in mediodorsal thalamic nucleus and nucleus accumbens in schizophrenics. Arch Gen Psychiatry 47(11):1023–1028

    Article  CAS  PubMed  Google Scholar 

  • Perez-Costas E, Guidetti P, Melendez-Ferro M, Kelley JJ, Roberts RC (2008) Neuroleptics and animal models: feasibility of oral treatment monitored by plasma levels and receptor occupancy assays. J Neural Transm 115:745–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rice MW, Roberts RC, Perez-Costas E, Melendez-Ferro M (2014) Map** dopaminergic deficiencies in the substantia nigra/ventral tegmental area in schizophrenia. Brain Struct Funct (Epub ahead of print)

  • Rimol LM, Hartberg CB, Nesvåg R, Fennema-Notestine C, Hagler DJ Jr, Pung CJ, Jennings RG, Haukvik UK, Lange E, Nakstad PH, Melle I, Andreassen OA, Dale AM, Agartz I (2010) Cortical thickness and subcortical volumes in schizophrenia and bipolar disorder. Biol Psychiatry 68(1):41–50

    Article  PubMed  Google Scholar 

  • Roberts RC, Force M, Kung L (2002) Dopaminergic synapses in the matrix of the ventrolateral striatum after chronic haloperidol treatment. Synapse 45(2):78–85

    Article  CAS  PubMed  Google Scholar 

  • Roberts R, Roche J, Conley R, Lahti A (2009) Dopaminergic synapses in the caudate of subjects with schizophrenia: relationship to treatment response. Synapse 63:520–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson GS, Fibiger HC (1992) Neuroleptics increase c-fos expression in the forebrain: contrasting effects of haloperidol and clozapine. Neuroscience 46:315–328

    Article  CAS  PubMed  Google Scholar 

  • Robertson GS, Staines WA (1994) D1 dopamine receptor agonist-induced Fos-like immunoreactivity occurs in basal forebrain and mesopontine tegmentum cholinergic neurons and striatal neurons immunoreactive for neuropeptide Y. Neuroscience 59(2):375–387

    Article  CAS  PubMed  Google Scholar 

  • Spoletini I, Cherubini A, Banfi G, Rubino IA, Peran P, Caltagirone C, Spalletta G (2011) Hippocampi, thalami, and accumbens microstructural damage in schizophrenia: a volumetry, diffusivity, and neuropsychological study. Schizophr Bull 37(1):118–130

    Article  PubMed  Google Scholar 

  • Toru M, Nishikawa T, Mataga N, Takashima M (1982) Dopamine metabolism increases in post-mortem schizophrenic basal ganglia. J Neural Transm 54:181–191

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the staff of the Maryland Brain Collection for their assistance with collection of the human tissue used in this study. We would also like to thank Charlotte Hammond and Joy Roche for the care and treatment of the rats, and collection of rat tissue, used in this study. This research was supported by the National Institute of Mental Health F31MH098566 (LAM), RO1MH066123 (RCR), and MH087752 (REM and RCR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosalinda C. Roberts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCollum, L.A., McCullumsmith, R.E. & Roberts, R.C. Tyrosine hydroxylase localization in the nucleus accumbens in schizophrenia. Brain Struct Funct 221, 4451–4458 (2016). https://doi.org/10.1007/s00429-015-1174-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-015-1174-9

Keywords

Navigation