Log in

TRIM24 is upregulated in human gastric cancer and promotes gastric cancer cell growth and chemoresistance

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

The tripartite motif protein tripartite motif-containing 24 (TRIM24) is involved in human cancer progression. However, the expression pattern and biological roles of TRIM24 in human gastric cancer have not been studied. Here, we report that expression of TRIM24 protein was upregulated in 65 of 133 gastric cancer specimens. TRIM24 upregulation positively correlated with clinical stage, local invasion, and poor patient prognosis. We overexpressed TRIM24 by transfection in SGC-7901 cells and used an siRNA strategy to knock down TRIM24 in MKN-1 cells. MTT and colony formation assays showed that transfection of TRIM24 plasmid accelerated, while its depletion inhibited cell proliferation rate. TRIM24 overxpression also induced chemoresistance to 5-FU in gastric cancer cells. Further analysis showed that TRIM24 overexpression upregulated cyclin D1 and Akt phosphorylation. Akt inhibitor LY294002 reversed the role of TRIM24 on chemoresistance. In conclusion, our study shows that TRIM24 is overexpressed in human gastric cancer and accelerates cell growth as well as induce chemoresistance, possibly through the Akt pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90

    Article  PubMed  Google Scholar 

  2. Brenner H, Rothenbacher D, Arndt V (2009) Epidemiology of stomach cancer. Methods Mol Biol 472:467–477

    Article  PubMed  Google Scholar 

  3. Jia B, Liu H, Kong Q, Li B (2012) RKIP expression associated with gastric cancer cell invasion and metastasis. Tumour Biol 33(4):919–925

    Article  CAS  PubMed  Google Scholar 

  4. Jia Y, Dong B, Tang L, Liu Y, Du H, Yuan P, Wu A, Ji J (2012) Apoptosis index correlates with chemotherapy efficacy and predicts the survival of patients with gastric cancer. Tumour Biol 33(4):1151–1158

    Article  CAS  PubMed  Google Scholar 

  5. Oishi Y, Watanabe Y, Yoshida Y, Sato Y, Hiraishi T, Oikawa R, Maehata T, Suzuki H, Toyota M, Niwa H, Suzuki M, Itoh F (2012) Hypermethylation of Sox17 gene is useful as a molecular diagnostic application in early gastric cancer. Tumour Biol 33(2):383–393

    Article  CAS  PubMed  Google Scholar 

  6. Le Douarin B, Nielsen AL, Garnier JM, Ichinose H, Jeanmougin F, Losson R, Chambon P (1996) A possible involvement of TIF1 alpha and TIF1 beta in the epigenetic control of transcription by nuclear receptors. EMBO J 15(23):6701–6715

    PubMed Central  PubMed  Google Scholar 

  7. Le Douarin B, Nielsen AL, You J, Chambon P, Losson R (1997) TIF1 alpha: a chromatin-specific mediator for the ligand-dependent activation function AF-2 of nuclear receptors? Biochem Soc Trans 25(2):605–612

    PubMed  Google Scholar 

  8. Le Douarin B, Zechel C, Garnier JM, Lutz Y, Tora L, Pierrat P, Heery D, Gronemeyer H, Chambon P, Losson R (1995) The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18. EMBO J 14(9):2020–2033

    PubMed Central  PubMed  Google Scholar 

  9. Klugbauer S, Rabes HM (1999) The transcription coactivator HTIF1 and a related protein are fused to the RET receptor tyrosine kinase in childhood papillary thyroid carcinomas. Oncogene 18(30):4388–4393

    Article  CAS  PubMed  Google Scholar 

  10. Zhong S, Delva L, Rachez C, Cenciarelli C, Gandini D, Zhang H, Kalantry S, Freedman LP, Pandolfi PP (1999) A RA-dependent, tumour-growth suppressive transcription complex is the target of the PML-RARalpha and T18 oncoproteins. Nat Genet 23(3):287–295

    Article  CAS  PubMed  Google Scholar 

  11. Belloni E, Trubia M, Gasparini P, Micucci C, Tapinassi C, Confalonieri S, Nuciforo P, Martino B, Lo-Coco F, Pelicci PG, Di Fiore PP (2005) 8p11 myeloproliferative syndrome with a novel t(7;8) translocation leading to fusion of the FGFR1 and TIF1 genes. Genes Chromosomes Cancer 42(3):320–325

    Article  CAS  PubMed  Google Scholar 

  12. Katzenellenbogen BS (1996) Estrogen receptors: bioactivities and interactions with cell signaling pathways. Biol Reprod 54(2):287–293

    Article  CAS  PubMed  Google Scholar 

  13. Tsai WW, Wang Z, Yiu TT, Akdemir KC, **a W, Winter S, Tsai CY, Shi X, Schwarzer D, Plunkett W, Aronow B, Gozani O, Fischle W, Hung MC, Patel DJ, Barton MC (2010) TRIM24 links a non-canonical histone signature to breast cancer. Nature 468(7326):927–932

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Chambon M, Orsetti B, Berthe ML, Bascoul-Mollevi C, Rodriguez C, Duong V, Gleizes M, Thenot S, Bibeau F, Theillet C, Cavailles V (2011) Prognostic significance of TRIM24/TIF-1alpha gene expression in breast cancer. Am J Pathol 178(4):1461–1469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Li H, Sun L, Tang Z, Fu L, Xu Y, Li Z, Luo W, Qiu X, Wang E (2012) Overexpression of TRIM24 correlates with tumor progression in non-small cell lung cancer. PLoS One 7(5):e37657

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Zhang LH, Yin AA, Cheng JX, Huang HY, Li XM, Zhang YQ, Han N, and Zhang X (2015) TRIM24 promotes glioma progression and enhances chemoresistance through activation of the PI3K/Akt signaling pathway. Oncogene 34:600–610

  17. Jeong SH, Ko GH, Cho YH, Lee YJ, Cho BI, Ha WS, Choi SK, Kim JW, Lee CW, Heo YS, Shin SH, Yoo J, Hong SC (2012) Pyrophosphatase overexpression is associated with cell migration, invasion, and poor prognosis in gastric cancer. Tumour Biol 33(6):1889–1898

    Article  CAS  PubMed  Google Scholar 

  18. Yu HF, Zhao G, Ge ZJ, Wang DR, Chen J, Zhang Y, Zha TZ, Zhang K, Zhang M, Tan YF, Zhou SJ, Jiang C (2012) High RIN1 expression is associated with poor prognosis in patients with gastric adenocarcinoma. Tumour Biol 33(5):1557–1563

    Article  CAS  PubMed  Google Scholar 

  19. **e C, Fu L, Han Y, Li Q, Wang E (2014) Decreased ARID1A expression facilitates cell proliferation and inhibits 5-fluorouracil-induced apoptosis in colorectal carcinoma. Tumour Biol 35:7921–7792

  20. Yothaisong S, Dokduang H, Techasen A, Namwat N, Yongvanit P, Bhudhisawasdi V, Puapairoj A, Riggins GJ, Loilome W (2013) Increased activation of PI3K/AKT signaling pathway is associated with cholangiocarcinoma metastasis and PI3K/mTOR inhibition presents a possible therapeutic strategy. Tumour Biol 34(6):3637–3648

    Article  CAS  PubMed  Google Scholar 

  21. Shin JY, Kim JO, Lee SK, Chae HS, Kang JH (2010) LY294002 may overcome 5-FU resistance via down-regulation of activated p-AKT in Epstein–Barr virus-positive gastric cancer cells. BMC Cancer 10:425

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Mian Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, ZF., Wang, ZN., Zhao, TT. et al. TRIM24 is upregulated in human gastric cancer and promotes gastric cancer cell growth and chemoresistance. Virchows Arch 466, 525–532 (2015). https://doi.org/10.1007/s00428-015-1737-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-015-1737-4

Keywords

Navigation