Log in

Spodoptera litura-mediated chemical defense is differentially modulated in older and younger systemic leaves of Solanum lycopersicum

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Metabolite profiling, biochemical assays, and transcript analysis revealed differential modulation of specific induced defense responses in local, older, and younger systemic leaves in Solanum lycopersicum upon Spodoptera litura herbivory.

Plants reconfigure their metabolome upon herbivory to induce production of defense metabolites involved in both direct and indirect defenses against insect herbivores. Herbivory mediated leaf-to-leaf systemic induction pattern of primary and non-volatile secondary metabolites is not well studied in tomato. Here, we show that, in cultivated tomato Solanum lycopersicum herbivory by generalist insect, Spodoptera litura results in differential alteration of primary metabolites, majorly sugars and amino acids and specific secondary metabolites in local, younger, and older systemic leaves. Cluster analysis of 55 metabolites identified by GC–MS showed correlation between local and younger systemic leaves. Re-allocation of primary metabolites like glucose and amino acids from the local to systemic leaf was observed. Secondary metabolites chlorogenic acid, caffeic acid, and catechin were significantly induced during herbivory in systemic leaves. Among specific secondary metabolites, chlorogenic acid and catechin significantly inhibits S. litura larval growth in all stages. Local leaf exhibited increased lignin accumulation upon herbivory. Differential alteration of induced defense responses like reactive oxygen species, polyphenol oxidase activity, proteinase inhibitor, cell wall metabolites, and lignin accumulation was observed in systemic leaves. The metabolite alteration also resulted in increased defense in systemic leaves. Thus, comparative analysis of metabolites in local and systemic leaves of tomato revealed a constant re-allocation of primary metabolites to systemic leaves and differential induction of secondary metabolites and induced defenses upon herbivory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

GC–MS:

Gas chromatography–mass spectrometry

HPLC–PDA:

High-performance liquid chromatography–photo diode array detector

CGA:

Chlorogenic acid

CA:

Caffeic acid

ROS:

Reactive oxygen species

PPO:

Polyphenol oxidase

PI :

Proteinase inhibitor

CAD :

Cinnamoyl alcohol dehydrogenase

DAB:

3, 3′-Diaminobenzidine

References

  • Ahn JH, Lee JS (2003) Sugar acts as a regulatory signal on the wound inducible expression of SbHRGP3TGUS in transgenic plants. Plant Cell Rep 22(4):286–293

    Article  CAS  PubMed  Google Scholar 

  • Ahn JH, Choi Y, Kwon YM, Kim SG, Choi YD, Lee JS (1999) A novel extensin gene encoding a hydroxyproline-rich glycoprotein requires sucrose for its wound-inducible expression in transgenic plants. Plant Cell 8(9):1477–1490

    Article  Google Scholar 

  • Alamgir KM, Hojo Y, Christeller JT, Fukumoto K, Isshiki R, Shinya T, Baldwin IT, Galis I (2016) Systematic analysis of rice (Oryza sativa) metabolic responses to herbivory. Plant Cell Environ 39(2):453–466

    Article  CAS  PubMed  Google Scholar 

  • Ali MB, Singh N, Shohael AM, Hahn EJ, Paek KY (2006) Phenolics metabolism and lignin synthesis in root suspension cultures of Panax ginseng in response to copper stress. Plant Sci 171(1):147–154

    Article  CAS  Google Scholar 

  • Alvarez ME, Penell RI, Meijer PJ, Ishikawa A, Dixon RA, Lamb C (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92(6):773–784

    Article  CAS  PubMed  Google Scholar 

  • Bautista-Lozada A, Espinosa-García FJ (2013) Odor uniformity among tomato individuals in response to herbivore depends on insect species. PLoS One 8(10):e77199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergomaz R, Boppre M (1986) A simple instant diet for rearing Arctiidae and other Moths. J Lepidopterists’ Soc 40:131–137

    Google Scholar 

  • Bi JL, Murphy JB, Felton GW (1997) Antinutritive and oxidative components as mechanisms of induced resistance in cotton to Helicoverpa zea. J Chem Ecol 23(1):97–117

    Article  CAS  Google Scholar 

  • Bleeker PM, Diergaarde PJ, Ament K, Guerra J, Weidner M, Schütz S, de Both MT, Haring MA, Schuurink RC (2009) The role of specific tomato volatiles in tomato–whitefly interaction. Plant Physiol 151(2):925–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  CAS  PubMed  Google Scholar 

  • Bosch M, Berger S, Schaller A, Stintzi A (2014) Jasmonate-dependent induction of polyphenol oxidase activity in tomato foliage is important for defense against Spodoptera exigua but not against Manduca sexta. BMC Plant Biol 14:257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Braun DM, Wang L, Ruan YL (2014) Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security. J Exp Bot 65(7):1713–1735

    Article  CAS  PubMed  Google Scholar 

  • Broadway RM, Duffey SS, Pearce G, Ryan CA (1986) Plant proteinase-inhibitors—a defense against herbivorous insects. Entomol Exp Appl 41:33–38

    Article  CAS  Google Scholar 

  • Buhtz A, Witzel K, Strehmel N, Ziegler J, Abel S, Grosch R (2015) Perturbations in the primary metabolism of tomato and Arabidopsis thaliana plants infected with the soil-borne fungus Verticillium dahliae. PLoS One 10(9):e0138242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng T, Wu J, Wu Y, Chilukuri RV, Huang L, Yamamoto K, Feng L, Li W, Chen Z, Guo H, Liu J, Li S, Wang X, Peng L, Liu D, Guo Y, Fu B, Li Z, Liu C, Chen Y, Tomar A, Hilliou F, Montagné N, Jacquin-Joly E, d’Alençon E, Seth RK, Bhatnagar RK, Jouraku A, Shiotsuki T, Kadono-Okuda K, Promboon A, Smagghe G, Arunkumar KP, Kishino H, Goldsmith MR, Feng Q, **a Q, Mita K (2017) Genomic adaptation to polyphagy and insecticides in a major East Asian noctuid pest. Nat Ecol Evol 11:1747–1756

    Article  Google Scholar 

  • Choi WG, Toyota M, Kim SH, Hilleary R, Gilroy S (2014) Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proc Natl Acad Sci USA 111(17):6497–6502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung SH, Rosa C, Scully ED, Peiffer M, Tooker JF, Hoover K, Luthe DS, Felton GW (2013) Herbivore exploits orally secreted bacteria to suppress plant defenses. Proc Natl Acad Sci USA 110:15728–15733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Constabel CP, Barbehenn R (2008) Defensive roles of polyphenol oxidase in plants. In: Schaller A (ed) Induced plant resistance to herbivory. Springer, Dordrecht, pp 253–270

    Chapter  Google Scholar 

  • Constabel CP, Bergey DR, Ryan CA (1995) Systemin activates synthesis of wound-inducible tomato leaf polyphenol oxidase via the octadecanoid defense signaling pathway. Proc Natl Acad Sci USA 92(2):407–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckardt NA (2010) Myo-inositol biosynthesis genes in Arabidopsis: differential patterns of gene expression and role in cell death. Plant Cell 22(3):537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elliger CA, Wong Y, Chan BG, Waiss AC Jr (1981) Growth inhibitors in tomato (Lycopersicon) to tomato fruit worm (Heliothis zea). J Chem Ecol 7(4):753–758

    Article  CAS  PubMed  Google Scholar 

  • Errard A, Ulrichs C, Kühne S, Mewis I, Mishig N, Maul R, Drungowski M, Parolin P, Schreiner M, Baldermann S (2016) Metabolite profiling reveals a specific response in tomato to predaceous Chrysoperla carnea larvae and herbivore(s)–predator interactions with the generalist pests Tetranychus urticae and Myzus persicae. Front Plant Sci 7:1256

    Article  PubMed  PubMed Central  Google Scholar 

  • Fand BB, Sul NT, Bal SK, Minhas PS (2015) Temperature impacts the development and survival of common cutworm (Spodoptera litura): simulation and visualization of potential population growth in India under warmer temperatures through life cycle modelling and spatial map**. PLoS One 10(4):e0124682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felton GW, Donato K, Del Vecchio RJ, Duffey SS (1989) Activation of plant foliar oxidases by insect feeding reduces nutritive quality of foliage for noctuid herbivores. J Chem Ecol 15(12):2667–2694

    Article  CAS  PubMed  Google Scholar 

  • Ferrieri AP, Arce CCM, Machado RAR, Meza-Canales ID, Lima E, Baldwin IT, Erb MA (2015) Nicotiana attenuata cell wall invertase inhibitor (NaCWII) reduces growth and increases secondary metabolite biosynthesis in herbivore attacked plants. New Phytol 208(2):519–530

    Article  CAS  PubMed  Google Scholar 

  • Gaquerel E, Gulati J, Baldwin IT (2014) Revealing insect herbivory-induced phenolamide metabolism: from single genes to metabolic network plasticity analysis. Plant J 79(4):679–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez S, Ferrieri RA, Schueller M, Orians CM (2010) Methyl jasmonate elicits rapid changes in carbon and nitrogen dynamics in tomato. New Phytol 188(3):835–844

    Article  CAS  PubMed  Google Scholar 

  • Green TR, Ryan CA (1972) Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science 175(4023):776–777

    Article  CAS  PubMed  Google Scholar 

  • Hägg JF, Mika ZM, Bak S (2013) Plant defense against insect herbivores. Int J Mol Sci 14(5):10242–10297

    Article  CAS  Google Scholar 

  • Harper AD, Bar-Peled M (2002) Biosynthesis of UDP-xylose. Cloning and characterization of a novel Arabidopsis gene family, UXS, encoding soluble and putative membrane-bound UDP-glucuronic acid decarboxylase isoforms. Plant Physiol 130(4):2188–2198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He J, Chen F, Chen S, Lv G, Deng Y, Fang W, Liu Z, Guan Z, He C (2011) Chrysanthemum leaf epidermal surface morphology and antioxidant and defense enzyme activity in response to aphid infestation. J Plant Physiol 168(7):687–693

    Article  CAS  PubMed  Google Scholar 

  • Herms DA, Mattson WT (1992) The dilemma of plants: to grow or to defend. Q Rev Biol 67(3):283–335

    Article  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Min L, Yang X, ** S, Zhang L, Li Y, Ma Y, Qi X, Li D, Liu H, Lindsey K, Zhu L, Zhang X (2017) Cotton laccase confers biotic stress tolerance. Plant Physiol 176:1808–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291(5511):2141–2144

    Article  CAS  PubMed  Google Scholar 

  • Kiep V, Vadassery J, Lattke J, Maaß JP, Boland W, Peiter E, Mithöfer A (2015) Systemic cytosolic Ca2+ elevation is activated upon wounding and herbivory in Arabidopsis. New Phytol 207(4):996–1004

    Article  CAS  PubMed  Google Scholar 

  • Korpita T, Gomez S, Orians CM (2014) Cues from a specialist herbivore increase tolerance to defoliation in tomato. Funct Ecol 28(2):395–401

    Article  Google Scholar 

  • Kumar P, Ortiz EV, Garrido E, Poveda K, Jander G (2016) Potato tuber herbivory increases resistance to aboveground lepidopteran herbivores. Oceologia 182:177–187

    Article  Google Scholar 

  • Lee G, Joo Y, Kim SG, Baldwin IT (2017) What happens in the pith stays in the pith: tissue-localized defense responses facilitate chemical niche differentiation between two spatially separated herbivores. Plant J 92(3):414–425

    Article  CAS  PubMed  Google Scholar 

  • Leiss KA, Maltese F, Choi YH, Verpoorte R, Klinkhamer PG (2009) Identification of chlorogenic acid as a resistance factor for thrips in chrysanthemum. Plant Physiol 150(3):1567–1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 1:1–10

    Article  CAS  Google Scholar 

  • Machado RAR, Ferrieri AP, Robert CAM, Glauser G, Kallenbach M, Baldwin IT, Erb M (2013) Leaf-herbivore attack reduces carbon reserves and regrowth from the roots via jasmonate and auxin signaling. New Phytol 200(4):1234–1246

    Article  CAS  PubMed  Google Scholar 

  • Machado RAR, Arce C, Ferrieri AP, Baldwin IT, Erb M (2015) Jasmonate-dependent depletion of soluble sugars compromises plant resistance to Manduca sexta. New Phytol 207:91–105

    Article  CAS  PubMed  Google Scholar 

  • Machado RAR, Baldwin IT, Erb M (2017) Herbivory-induced jasmonates constrain plant sugar accumulation and growth by antagonizing gibberellin signaling and not by promoting secondary metabolite production. New Phytol 215(2):803–812

    Article  CAS  PubMed  Google Scholar 

  • Maffei ME, Mithöfer A, Arimura GI, Uchtenhagen H, Bossi S, Bertea CM, Cucuzza LS, Novero M, Volpe V, Quadro S, Boland W (2006) Effects of feeding Spodoptera littoralis on lima bean leaves. III. Membrane depolarization and involvement of hydrogen peroxide. Plant Physiol 140(3):1022–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallikarjuna N, Kranthi KR, Jadhav DR, Kranthi S, Chandra S (2004) Influence of foliar chemical compounds on the development of Spodoptera litura (Fab.) in interspecific derivatives of groundnut. J Appl Entomol 128(5):321–328

    Article  CAS  Google Scholar 

  • Marti G, Erb M, Boccard J, Glauser G, Doyen GR, Villard N, Robert CAM, Turlings TC, Rudaz S, Wolfender JL (2013) Metabolomics reveals herbivore-induced metabolites of resistance and susceptibility in maize leaves and roots. Plant Cell Environ 36(3):621–639

    Article  CAS  PubMed  Google Scholar 

  • Mithöfer A, Boland W (2008) Recognition of herbivory-associated molecular patterns. Plant Physiol 146(3):825–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mithöfer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450

    Article  CAS  PubMed  Google Scholar 

  • Moctezuma C, Hammerbacher A, Heil M, Gershenzon J, Méndez-Alonzo R, Oyama K (2014) Specific polyphenols and tannins are associated with defense against insect herbivores in the tropical oak Quercus oleoides. J Chem Ecol 40(5):458–467

    Article  CAS  PubMed  Google Scholar 

  • Mousavi SA, Chauvin A, Pascaud F, Kellenberger S, Farmer EE (2013) GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling. Nature 500(7463):422–426

    Article  CAS  PubMed  Google Scholar 

  • Ohyama A, Hirai M (1999) Introducing an antisense gene for a cell-wall bound acid invertase to tomato (Lycopersicon esculentum) plants reduces carbohydrate content in leaves and fertility. Plant Biotechnol 16(2):147–151

    Article  CAS  Google Scholar 

  • Olthof MR, Hollman PC, Katan MB (2001) Chlorogenic acid and caffeic acid are absorbed in humans. J Nutr 131(1):66–71

    Article  CAS  PubMed  Google Scholar 

  • Orozco-Cardenas M, Ryan CA (1999) Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc Natl Acad Sci USA 96(11):6553–6557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paré WP, Tumlinson HT (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol 121(2):325–332

    Article  PubMed  PubMed Central  Google Scholar 

  • Pearce G, Ryan CA (2003) Systemic signaling in tomato plants for defense against herbivores. Isolation and characterization of three novel defense-signaling glycopeptide hormones coded in a single precursor gene. J Biol Chem 278(32):30044–30050

    Article  CAS  PubMed  Google Scholar 

  • Poorter L, Arets EJMM (2003) Light environment and tree strategies in a Bolivian tropical moist forest: an evaluation of the light partitioning hypothesis. Plant Ecol 166(2):295–306

    Article  Google Scholar 

  • Rennie EA, Scheller HV (2014) Xylan biosynthesis. Curr Opin Biotechnol 26:100–107

    Article  CAS  PubMed  Google Scholar 

  • Rhoades DF (1991) Evolution of plant chemical defense against herbivores. In: Rosenthal GA, Janzen DH (eds) Herbivores: their interaction with secondary plant metabolites. Academic Press, New York, pp 4–53

    Google Scholar 

  • Roth R, Boudet AM, Pont Lezica R (1997) Lignification and cinnamyl alcohol dehydrogenase activity in develo** stems of tomato and poplar: a spatial and kinetic study through tissue printing. J Exp Bot 48(2):247–254

    Article  CAS  Google Scholar 

  • Sampedro L, Moreira X, Zas R (2011) Costs of constitutive and herbivore-induced chemical defences in pine trees emerge only under low nutrient availability. J Ecol 99(3):818–827

    Article  Google Scholar 

  • Schauer N, Zamir D, Fernie AR (2005) Metabolic profiling of leaves and fruit of wild species tomato: a survey of the Solanum lycopersicum complex. J Exp Bot 56(410):297–307

    Article  CAS  PubMed  Google Scholar 

  • Schwachtje J, Baldwin IT (2008) Why does herbivore attack reconfigure primary metabolism? Plant Physiol 146(3):845–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheen J (2014) Master regulators in plant glucose signaling networks. J Plant Biol 57(2):67–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinya T, Hojo Y, Desaki Y, Christeller JT, Okada K, Shibuya N, Galis I (2016) Modulation of plant defense responses to herbivores by simultaneous recognition of different herbivore-associated elicitors in rice. Sci Rep 6:32537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddique S, Endres S, Sobczak M, Radakovic ZS, Fragner L, Grundler FM, Weckwerth W, Tenhaken R, Bohlmann H (2014) Myo-inositol oxygenase is important for the removal of excess myo-inositol from syncytia induced by Heterodera schachtii in Arabidopsis roots. New Phytol 201(2):476–485

    Article  CAS  PubMed  Google Scholar 

  • Steinbrenner AD, Gomez S, Osorio S, Fernie AR, Orians CM (2011) Herbivore-induced changes in tomato (Solanum lycopersicum) primary metabolism: a whole plant perspective. J Chem Ecol 37(12):1294–1303

    Article  CAS  PubMed  Google Scholar 

  • Steppuhn A, Baldwin IT (2007) Resistance management in a native plant: nicotine prevents herbivores from compensating for plant protease inhibitors. Ecol Lett 10(6):499–511

    Article  PubMed  Google Scholar 

  • Sun JQ, Jiang HL, Li CY (2011) Systemin/jasmonate-mediated systemic defense signaling in tomato. Mol Plant 4(4):607–615

    Article  CAS  PubMed  Google Scholar 

  • Tan CW, Peiffer M, Hoover K, Rosa C, Acevedo FE, Felton GW (2018) Symbiotic polydna virus of a parasite manipulates caterpillar and plant immunity. Proc Natl Acad Sci 115:5199–5204

    Article  PubMed  PubMed Central  Google Scholar 

  • Tao L, Hunter MD (2013) Allocation of resources away from sites of herbivory under simultaneous attack by aboveground and belowground herbivores in the common milkweed, Asclepias syriaca. Arthropod Plant Interact 7(2):217–224

    Article  Google Scholar 

  • Tauzin A, Giardina T (2014) Sucrose and invertases, a part of the plant defense response to the biotic stresses. Front Plant Sci 5:293

    Article  PubMed  PubMed Central  Google Scholar 

  • Tenenboim H, Brotman Y (2016) Omic relief for the biotically stressed: metabolomics of plant biotic interactions. Trends Plant Sci 21(9):781–791

    Article  CAS  PubMed  Google Scholar 

  • Tytgat TO, Verhoeven KJ, Jansen JJ, Raaijmakers CE, Bakx-Schotman T, McIntyre LM, van der Putten WH, Biere A, van Dam NM (2013) Plants know where it hurts: root and shoot jasmonic acid induction elicit differential responses in Brassica oleracea. PLoS One 8(6):e65502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153(3):895–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7(10):1306–1320

    Article  PubMed  PubMed Central  Google Scholar 

  • Witzel K, Hanschen FS, Klopsch R, Ruppel S, Schreiner M, Grosch R (2015) Verticillium longisporum infection induces organ-specific glucosinolate degradation in Arabidopsis thaliana. Front Plant Sci 6:508

    PubMed  PubMed Central  Google Scholar 

  • Xu L, Zhu L, Tu L, Liu L, Yuan D, ** L, Long L, Zhang X (2011) Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. J Exp Bot 62(15):5607–5621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zebelo S, Piorkowski J, Disi J, Fadamiro H (2014) Secretions from the ventral eversible gland of Spodoptera exigua caterpillars activate defense-related genes and induce emission of volatile organic compounds in tomato, Solanum lycopersicum. BMC Plant Biol 14:140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Cohn NS, Mitchell JP (1996) Induction of a pea cell-wall invertase gene by wounding and its localized expression in phloem. Plant Physiol 112(3):1111–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Q, Dixon RA (2014) Altering the cell wall and its impact on plant disease: from forage to bioenergy. Annu Rev Phytopathol 52:69–91

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Lou YR, Tzin V, Jander G (2015) Alteration of plant primary metabolism in response to insect herbivory. Plant Physiol 169(3):1488–1498

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge Department of Biotechnology (DBT), India, through NIPGR Core Grant and BIOCARE Grant, and Max Planck partner group program of the Max Planck Society (Germany) for funding this work. We also acknowledge National Bureau of Agricultural Insect Resources, Bangalore for the initial batch of S. litura eggs (National Accession No. is: NBAII-MP-NOC-02), Pradeep Kumar Maurya (NIPGR) for rearing Spodoptera, NIPGR central instrumentation and phytotron facility, JNU advanced instrumentation facility for mass spectrometry, and DBT-eLibrary Consortium (DeLCON) for providing access to e-resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyothilakshmi Vadassery.

Ethics declarations

Conflict of interest

Authors have no conflict of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 21 kb)

Supplementary material 2 (PPTX 2459 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, A., Mishra, S. & Vadassery, J. Spodoptera litura-mediated chemical defense is differentially modulated in older and younger systemic leaves of Solanum lycopersicum. Planta 248, 981–997 (2018). https://doi.org/10.1007/s00425-018-2953-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-018-2953-3

Keywords

Navigation