Log in

Differential proteomic analysis reveals sequential heat stress-responsive regulatory network in radish (Raphanus sativus L.) taproot

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Differential abundance protein species (DAPS) involved in reducing damage and enhancing thermotolerance in radish were firstly identified. Proteomic analysis and omics association analysis revealed a HS-responsive regulatory network in radish.

Heat stress (HS) is a major destructive factor influencing radish production and supply in summer, for radish is a cool season vegetable crop being susceptible to high temperature. In this study, the proteome changes of radish taproots under 40 °C treatment at 0 h (Control), 12 h (Heat12) and 24 h (Heat24) were analyzed using iTRAQ (Isobaric Tag for Relative and Absolute Quantification) approach. In total, 2258 DAPS representing 1542 differentially accumulated uniprotein species which respond to HS were identified. A total of 604, 910 and 744 DAPS was detected in comparison of Control vs. Heat12, Control vs. Heat24, and Heat12 vs. Heat24, respectively. Gene ontology and pathway analysis showed that annexin, ubiquitin-conjugating enzyme, ATP synthase, heat shock protein (HSP) and other stress-related proteins were predominately enriched in signal transduction, stress and defense pathways, photosynthesis and energy metabolic pathways, working cooperatively to reduce stress-induced damage in radish. Based on iTRAQ combined with the transcriptomics analysis, a schematic model of a sequential HS-responsive regulatory network was proposed. The initial sensing of HS occurred at the plasma membrane, and then key components of stress signal transduction triggered heat-responsive genes in the plant protective metabolism to re-establish homeostasis and enhance thermotolerance. These results provide new insights into characteristics of HS-responsive DAPS and facilitate dissecting the molecular mechanisms underlying heat tolerance in radish and other root crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DAPS:

Differential abundance protein species

DEG:

Differentially expressed gene

GO:

Gene ontology

HS:

Heat stress

HSP:

Heat shock protein

iTRAQ:

Isobaric tag for relative and absolute quantification

References

  • Abdalla KO, Rafudeen MS (2012) Analysis of the nuclear proteome of the resurrection plant Xerophyta viscosa in response to dehydration stress using iTRAQ with 2DLC and tandem mass spectrometry. J Proteom 75:2361–2374

    Article  CAS  Google Scholar 

  • Ahuja I, de Vos RC, Bones AM, Hall RD (2010) Plant molecular stress responses face climate change. Trends Plant Sci 15:664–674

    Article  CAS  PubMed  Google Scholar 

  • Akter S, Huang J, Waszczak C, Jacques S, Gevaert K, Van Breusegem F, Messens J (2015) Cysteines under ROS attack in plants: a proteomics view. J Exp Bot 66:2935–2944

    Article  CAS  PubMed  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Bungard D, Fuerth BJ, Zeng PY, Faubert B, Maas NL, Viollet B, Carling D, Thompson CB, Jones RG, Berger SL (2010) Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation. Science 329:1201–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bykova NV, Rampitsch C (2013) Modulating protein function through reversible oxidation: redox-mediated processes in plants revealed through proteomics. Proteomics 13:579–596

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu P, Chen H, Zhou Y, Li Y, Ding Y, Jiang L, Tsang EW, Wu K, Huang S (2012) Proteomic and functional analyses of Nelumbo nucifera annexins involved in seed thermotolerance and germination vigor. Planta 235:1271–1288

    Article  CAS  PubMed  Google Scholar 

  • Das S, Krishnan P, Mishra V, Kumar R, Ramakrishnan B, Singh NK (2015) Proteomic changes in rice leaves grown under open field high temperature stress conditions. Mol Biol Rep 42:1545–1558

    Article  CAS  PubMed  Google Scholar 

  • Das A, Eldakak M, Paudel B, Kim D, Hemmati H, Basu C, Rohila JS (2016) Leaf proteome analysis reveals prospective drought and heat stress response mechanisms in soybean. Biomed Res Int 2016:23

    Article  Google Scholar 

  • Dodd AN, Salathia N, Hall A, Kevei E, Toth R, Nagy F, Hibberd JM, Millar AJ, Webb AA (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630–633

    Article  CAS  PubMed  Google Scholar 

  • Echevarría-Zomeño S, Fernández-Calvino L, Castro-Sanz AB, López JA, Vázquez J, Castellano MM (2016) Dissecting the proteome dynamics of the early heat stress response leading to plant survival or death in Arabidopsis. Plant, Cell Environ 39:1264–1278

    Article  Google Scholar 

  • Evers D, Legay S, Lamoureux D, Hausman JF, Hoffmann L, Renaut J (2012) Towards a synthetic view of potato cold and salt stress response by transcriptomic and proteomic analyses. Plant Mol Biol 78:503–514

    Article  CAS  PubMed  Google Scholar 

  • Fan H, Xu Y, Du C, Wu X (2015) Phloem sap proteome studied by iTRAQ provides integrated insight into salinity response mechanisms in cucumber plants. J Proteom 125:54–67

    Article  CAS  Google Scholar 

  • Ferreira S, Hjerno K, Larsen M, Wingsle G, Larsen P, Fey S, Roepstorff P, Salome Pais M (2006) Proteome profiling of Populus euphratica Oliv. upon heat stress. Ann Bot 98:361–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge P, Hao P, Cao M, Guo G, Lv D, Subburaj S, Li X, Yan X, **ao J, Ma W (2013) iTRAQ-based quantitative proteomic analysis reveals new metabolic pathways of wheat seedling growth under hydrogen peroxide stress. Proteomics 13:3046–3058

    CAS  PubMed  Google Scholar 

  • Guo Y, Wang Z, Guan X, Hu Z, Zhang Z, Zheng J, Lu Y (2017) Proteomic analysis of Potentilla fruticosa L. leaves by iTRAQ reveals responses to heat stress. PLoS ONE 12(8):e0182917

    Article  PubMed  PubMed Central  Google Scholar 

  • Han F, Chen H, Li X, Yang M, Liu G, Shen S (2009) A comparative proteomic analysis of rice seedlings under various high-temperature stresses. BBA-Proteins Proteom 1794:1625–1634

    Article  CAS  Google Scholar 

  • Hays DB, Do JH, Mason RE, Morgan G, Finlayson SA (2007) Heat stress induced ethylene production in develo** wheat grains induces kernel abortion and increased maturation in a susceptible cultivar. Plant Sci 172:1113–1123

    Article  CAS  Google Scholar 

  • Huang H, Ceccarelli DF, Orlicky S, St-Cyr DJ, Ziemba A, Garg P, Plamondon S, Auer M, Sidhu S, Marinier A (2014) E2 enzyme inhibition by stabilization of a low-affinity interface with ubiquitin. Nat Chem Biol 10:156–163

    Article  CAS  PubMed  Google Scholar 

  • Imaizumi T (2010) Arabidopsis circadian clock and photoperiodism: time to think about location. Curr Opin Plant Biol 13:83–89

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153

    Article  CAS  PubMed  Google Scholar 

  • James AB, Monreal JA, Nimmo GA, Kelly CL, Herzyk P, Jenkins GI, Nimmo HG (2008) The circadian clock in Arabidopsis roots is a simplified slave version of the clock in shoots. Science 322:1832–1835

    Article  CAS  PubMed  Google Scholar 

  • Janmohammadi M, Zolla L, Rinalducci S (2015) Low temperature tolerance in plants: changes at the protein level. Phytochemistry 11:776–789

    Google Scholar 

  • Jiang J, Liu X, Liu G, Liu C, Li S, Wang L (2017) Integrating omics and alternative splicing reveals insights into grape response to high temperature. Plant Physiol 173:1502–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JM, Sasaki T, Ueda M, Sako K, Seki M (2015) Chromatin changes in response to drought, salinity, heat, and cold stresses in plants. Front Plant Sci 6:114

    PubMed  PubMed Central  Google Scholar 

  • Kinoshita T, Seki M (2014) Epigenetic memory for stress response and adaptation in plants. Plant Cell Physiol 55:1859–1863

    Article  CAS  PubMed  Google Scholar 

  • Koh J, Chen G, Yoo MJ, Zhu N, Dufresne D, Erickson JE, Shao H, Chen S (2015) Comparative proteomic analysis of Brassica napus in response to drought stress. J Proteome Res 1430:68–81

    Google Scholar 

  • Kosová K, Vítámvás P, Prášil IT, Renaut J (2011) Plant proteome changes under abiotic stress-contribution of proteomics studies to understanding plant stress response. J Proteom 74:1301–1322

    Article  Google Scholar 

  • Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316

    Article  CAS  PubMed  Google Scholar 

  • Koussevitzky S, Suzuki N, Huntington S, Armijo L, Sha W, Cortes D, Shulaev V, Mittler R (2008) Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination. J Biol Chem 283:34197–34203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar SV, Wigge PA (2010) H2A. Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140:136–147

    Article  CAS  PubMed  Google Scholar 

  • Kumar RR, Goswami S, Gupta R, Verma P, Singh K, Singh JP, Kumar M, Sharma SK, Pathak H, Rai RD (2016) The stress of suicide: temporal and spatial expression of putative heat shock protein 70 protect the cells from heat injury in Wheat (Triticum aestivum). J Plant Growth Regul 35:65–82

    Article  CAS  Google Scholar 

  • Laino P, Shelton D, Finnie C, De Leonardis AM, Mastrangelo AM, Svensson B, Lafiandra D, Masci S (2010) Comparative proteome analysis of metabolic proteins from seeds of durum wheat (cv. Svevo) subjected to heat stress. Proteomics 10:2359–2368

    Article  CAS  PubMed  Google Scholar 

  • Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128:682–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138:882–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee D, Ahsan N, Lee S, Kang KY, Bahk JD, Lee I, Lee B (2007) A proteomic approach in analyzing heat-responsive proteins in rice leaves. Proteomics 7:3369–3383

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Lee DW, Lee Y, Mayer U, Stierhof YD, Lee S, Jürgens G, Hwang I (2009) Heat shock protein cognate 70-4 and an E3 ubiquitin ligase, CHIP, mediate plastid-destined precursor degradation through the ubiquitin-26S proteasome system in Arabidopsis. Plant Cell 21:3984–4001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Schmidt W (2010) A lysine-63-linked ubiquitin chain-forming conjugase, UBC13, promotes the developmental responses to iron deficiency in Arabidopsis roots. Plant J 62:330–343

    Article  CAS  PubMed  Google Scholar 

  • Li S, Liu J, Liu Z, Li X, Wu F, He Y (2014) Heat-induced TAS1 TARGET1 mediates thermotolerance via heat stress transcription factor A1a-directed pathways in Arabidopsis. Plant Cell 26:1764–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Zhao F, Fang W, **e D, Hou J, Yang X, Zhao Y, Tang Z, Nie L, Lv S (2015a) Identification of early salt stress responsive proteins in seedling roots of upland cotton (Gossypium hirsutum L.) employing iTRAQ-based proteomic technique. Front Plant Sci 6:732

    PubMed  PubMed Central  Google Scholar 

  • Li X, Chao D, Wu Y, Huang X, Chen K, Cui L, Su L, Ye W, Chen H, Chen H (2015b) Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nat Genet 47:827–833

    Article  CAS  PubMed  Google Scholar 

  • Liu GT, Ma L, Duan W, Wang BC, Li JH, Xu HG, Yan XQ, Yan BF, Li SH, Wang LJ (2014a) Differential proteomic analysis of grapevine leaves by iTRAQ reveals responses to heat stress and subsequent recovery. BMC Plant Biol 14:110

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Wang J, Yang F, Yang L, Yue Y, **ang J, Gao M, **ong F, Lv D, Wu X, Liu N, Zhang X, Li X, Yang Y (2014b) A novel membrane-bound E3 ubiquitin ligase enhances the thermal resistance in plants. Plant Biotechnol J 12:93–104

    Article  PubMed  Google Scholar 

  • Liu J, Zhang C, Wei C, Liu X, Wang M, Yu F, **e Q, Tu J (2016) The RING finger ubiquitin E3 ligase OsHTAS enhances heat tolerance by promoting H2O2-induced stomatal closure in rice. Plant Physiol 170:429–443

    Article  CAS  PubMed  Google Scholar 

  • Long SP, Ort DR (2010) More than taking the heat: crops and global change. Curr Opin Plant Biol 13:241–248

    Article  PubMed  Google Scholar 

  • Lyzenga WJ, Stone SL (2012) Abiotic stress tolerance mediated by protein ubiquitination. J Exp Bot 63:599–616

    Article  CAS  PubMed  Google Scholar 

  • Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69–76

    Article  CAS  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Tran LSP, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630

    Article  CAS  PubMed  Google Scholar 

  • Neilson KA, Gammulla CG, Mirzaei M, Imin N, Haynes PA (2010) Proteomic analysis of temperature stress in plants. Proteomics 10:828–845

    Article  CAS  PubMed  Google Scholar 

  • Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K (2017) Transcriptional regulatory network of plant heat stress response. Trends Plant Sci 22:53–65

    Article  CAS  PubMed  Google Scholar 

  • Pecinka A, Dinh HQ, Baubec T, Rosa M, Lettner N, Scheid OM (2010) Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis. Plant Cell 22:3118–3129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plechanovová A, Jaffray EG, Tatham MH, Naismith JH, Hay RT (2012) Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis. Nature 489:115–120

    Article  PubMed  PubMed Central  Google Scholar 

  • Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C, Genschik P (2003) EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell 115:679–689

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Zhong X, Zhao F, Wang Y, Yan B, Li Q, Chen G, Mao B, Wang J, Li Y, **ao G, He Y, **ao H, Li J, He Z (2015) Overexpression of receptor-like kinase ERECTA improves thermotolerance in rice and tomato. Nat Biotechnol 33:996–1003

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    Article  CAS  PubMed  Google Scholar 

  • Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163:515–523

    Article  CAS  Google Scholar 

  • Valdés-López O, Batek J, Gomez-Hernandez N, Nguyen C, Isidra-Arellano M, Zhang N, Aldrich J (2016) Soybean roots grown under heat stress show global changes in their transcriptional and proteomic profiles. Front Plant Sci 7:517

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang ZQ, Xu XY, Gong QQ, **e C, Fan W, Yang JL, Lin QS, Zheng SJ (2014) Root proteome of rice studied by iTRAQ provides integrated insight into aluminum stress tolerance mechanisms in plants. J Proteom 98:189–205

    Article  CAS  Google Scholar 

  • Wang W, Lv Y, Fang F, Hong S, Guo Q, Hu S, Zou F, Shi L, Lei Z, Ma K, Zhou D, Zhang D, Sun Y, Ma L, Shen B, Zhu C (2015a) Identification of proteins associated with pyrethroid resistance by iTRAQ-based quantitative proteomic analysis in Culex pipiens pallens. Parasit Vectors 8:95

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang R, Xu L, Zhu X, Zhai L, Wang Y, Yu R, Gong Y, Limera C, Liu L (2015b) Transcriptome-wide characterization of novel and heat-stress-responsive microRNAs in radish (Raphanus Sativus L.) using next-generation sequencing. Plant Mol Biol Rep 33:867–880

    Article  CAS  Google Scholar 

  • Wang X, Dinler BS, Vignjevic M, Jacobsen S, Wollenweber B (2015c) Physiological and proteome studies of responses to heat stress during grain filling in contrasting wheat cultivars. Plant Sci 230:33–50

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Ma X, Wang H, Li B, Clark G, Guo Y, Roux S, Sun D, Tang W (2015d) Proteomic study of microsomal proteins reveals a key role for Arabidopsis annexin 1 in mediating heat stress-induced increase in intracellular calcium levels. Mol Cell Proteom 14:686–694

    Article  CAS  Google Scholar 

  • Wang X, Shan X, Ying W, Su S, Li S, Liu H, Han J, Xue C, Yuan Y (2016) iTRAQ-based quantitative proteomic analysis reveals new metabolic pathways responding to chilling stress in maize seedlings. J Proteom 146:14–24

    Article  CAS  Google Scholar 

  • Xu C, Huang B (2008) Root proteomic responses to heat stress in two Agrostis grass species contrasting in heat tolerance. J Exp Bot 9:4183–4194

    Article  Google Scholar 

  • Xu C, Huang B (2012) Comparative analysis of proteomic responses to single and simultaneous drought and heat stress for two Kentucky bluegrass cultivars. Crop Sci 52:1246–1260

    Article  CAS  Google Scholar 

  • Xu J, Duan X, Yang J, Beeching JR, Zhang P (2013) Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots. Plant Physiol 161:1517–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Wang J, Li Q, Hwang JR, Patterson C, Zhang H (2003) AtCHIP, a U-box-containing E3 ubiquitin ligase, plays a critical role in temperature stress tolerance in Arabidopsis. Plant Physiol 132:861–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang F, Jorgensen AD, Li H, Sondergaard I, Finnie C, Svensson B, Jiang D, Wollenweber B, Jacobsen S (2011) Implications of high-temperature events and water deficits on protein profiles in wheat (Triticum aestivum L. cv. Vinjett) grain. Proteomics 11:1684–1695

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Chen J, Liu Q, Ben C, Todd CD, Shi J, Yang Y, Hu X (2012) Comparative proteomic analysis of the thermotolerant plant Portulaca oleracea acclimation to combined high temperature and humidity stress. J Proteome Res 11:3605–3623

    Article  CAS  PubMed  Google Scholar 

  • Zargar SM, Fujiwara M, Inaba S, Kobayashi M, Kurata R, Ogata Y, Fukao Y (2015) Correlation analysis of proteins responsive to Zn, Mn, or Fe deficiency in Arabidopsis roots based on iTRAQ analysis. Plant Cell Rep 34:157–166

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Li G, Huang W, Bi T, Chen G, Tang Z, Su W, Sun W (2010) Proteomic study of Carissa spinarumin response to combined heat and drought stress. Proteomics 10:3117–3129

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Xu L, Zhu X, Gong Y, **ang F, Sun X, Liu L (2013) Proteomic analysis of heat stress response in leaves of radish (Raphanus sativus L.). Plant Mol Biol Rep 31:195–203

    Article  Google Scholar 

  • Zhang Y, Sun M, Zhang Q (2014) Proteomic analysis of the heat stress response in leaves of two contrasting chrysanthemum varieties. Plant Omics 7:229–236

    Google Scholar 

  • Zhang CW, Wei YP, **ao D, Gao LW, Lyu SW, Hou XL (2016) Transcriptomic and proteomic analyses provide new insights into the regulation mechanism of low-temperature-induced leafy head formation in Chinese cabbage. J Proteom 144:1–10

    Article  CAS  Google Scholar 

  • Zhang H, Lei G, Zhou H, He C, Liao J, Huang Y (2017) Quantitative iTRAQ—based proteomic analysis of rice grains to assess high night temperature stress. Proteomics 17:5

    Google Scholar 

  • Zhao F, Zhang D, Zhao Y, Wang W, Yang H, Tai F, Li C, Hu X (2016) The difference of physiological and proteomic changes in maize leaves adaptation to drought, heat, and combined both stresses. Front Plant Sci 7:1471

    PubMed  PubMed Central  Google Scholar 

  • Zhou G, Chang R, Qiu L (2010) Overexpression of soybean ubiquitin-conjugating enzyme gene GmUBC2 confers enhanced drought and salt tolerance through modulating abiotic stress-responsive gene expression in Arabidopsis. Plant Mol Biol 72:357–367

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Zhang Y, Qi J, Chi Y, Fan B, Yu J, Chen Z (2014) E3 ubiquitin ligase CHIP and NBR1-mediated selective autophagy protect additively against proteotoxicity in plant stress responses. PLoS Genet 10:e1004116

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was in part supported by grants from the National Key Technology Research and Development Program of China (2017YFD0101803; 2017YFD0101806), Jiangsu Agricultural Science and Technology Innovation Fund [JASTIF, CX(16)1012] and the Key Technology Research and Development Program of Jiangsu Province (BE2016379).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwang Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Mei, Y., Xu, L. et al. Differential proteomic analysis reveals sequential heat stress-responsive regulatory network in radish (Raphanus sativus L.) taproot. Planta 247, 1109–1122 (2018). https://doi.org/10.1007/s00425-018-2846-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-018-2846-5

Keywords

Navigation