Log in

The plastidial starch phosphorylase from rice endosperm: catalytic properties at low temperature

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Consistent with its essential role in starch biosynthesis at low temperatures, the plastidial starch phosphorylase from rice endosperm is highly active at low temperature. Moreover, contrary to results on other higher plant phosphorylases, the L80 peptide, a domain unique to plant phosphorylases and not present in orthologous phosphorylases from other organisms, is not involved in enzyme catalysis.

Starch phosphorylase (Pho) is an essential enzyme in starch synthesis in develo** rice endosperm as the enzyme plays a critical role in both the early and maturation phases of starch granule formation especially at low temperature. In this study, we demonstrated that the rice Pho1 maintains substantial enzyme activity at low temperature (<20 °C) and its substrate affinities for branched α-glucans and glucose-1-phosphate were significantly increased at the lower reaction temperatures. Under sub-saturating substrate conditions, OsPho1 displayed higher catalytic activities at 18 °C than at optimal 36 °C, supporting the prominent role of the enzyme in starch synthesis at low temperature. Removal of the highly charged 80-amino acid sequence L80 peptide, a region found exclusively in the plastidial Pho1 of higher plants, did not significantly alter the catalytic and regulatory properties of OsPho1 but did affect heat stability. Our kinetic results support the low temperature biosynthetic role of OsPho1 in rice endosperm and indicate that its L80 region is unlikely to have a direct enzymatic role but provides stability of the enzyme under heat stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Glc1P:

Glucose-1-phosphate

Glc1,6P:

Glucose-1,6-diphosphate

Glc6P:

Glucose-6-phosphate

IPTG:

Isopropyl β-D-1-thiogalactopyranoside

Pi:

Inorganic phosphate

SDS:

Sodium dodecyl sulfate

References

  • Albrecht T, Greve B, Pusch K, Kossmann J, Buchner P, Wobus U, Steup M (1998) Homodimers and heterodimers of Pho1-type phosphorylase isoforms in Solanum tuberosum L. as revealed by sequence-specific antibodies. Eur J Biochem 251(1–2):343–352

    Article  CAS  PubMed  Google Scholar 

  • Albrecht T, Koch A, Lode A, Greve B, Schneider-Mergener J, Steup M (2001) Plastidic (Pho1-type) phosphorylase isoforms in potato (Solanum tuberosum L.) plants: expression analysis and immunochemical characterization. Planta 213(4):602–613

    Article  CAS  PubMed  Google Scholar 

  • Campagnolo M, Campa C, Zorzi RD, Wuerges J, Geremia S (2008) X-ray studies on ternary complexes of maltodextrin phosphorylase. Arch Biochem Biophys 471(1):11–19

    Article  CAS  PubMed  Google Scholar 

  • Chen HM, Chang SC, Wu CC, Cuo TS, Wu JS, Juang RH (2002) Regulation of the catalytic behaviour of L-form starch phosphorylase from sweet potato roots by proteolysis. Physiol Plant 114(4):506–515

    Article  CAS  PubMed  Google Scholar 

  • Colleoni C, Dauville D, Mouille G, Morell M, Samuel M, Slomiany MC, Li nard L, Wattebled F, d’Hulst C, Ball S (1999) Biochemical characterization of the chlamydomonas reinhardtii alpha-1,4 glucanotransferase supports a direct function in amylopectin biosynthesis. Plant Physiol 120(4):1005–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dauvillee D, Chochois V, Steup M, Haebel S, Eckermann N, Ritte G, Ral JP, Colleoni C, Hicks G, Wattebled F, Deschamps P, d’Hulst C, Lienard L, Cournac L, Putaux JL, Dupeyre D, Ball SG (2006) Plastidial phosphorylase is required for normal starch synthesis in Chlamydomonas reinhardtii. Plant J 48(2):274–285

    Article  CAS  PubMed  Google Scholar 

  • Fettke J, Chia T, Eckermann N, Smith A, Steup M (2006) A transglucosidase necessary for starch degradation and maltose metabolism in leaves at night acts on cytosolic heteroglycans (SHG). Plant J 46(4):668–684

    Article  CAS  PubMed  Google Scholar 

  • Graves DJ, Wang JH (1972) 15 α-glucan phosphorylases-chemical and physical basis of catalysis and regulation. The enzymes 7:435–482

    Article  CAS  Google Scholar 

  • Hwang S-K, Hamada S, Okita TW (2007) Catalytic implications of the higher plant ADP-glucose pyrophosphorylase large subunit. Phytochemistry 68(4):464–477

    Article  CAS  PubMed  Google Scholar 

  • Hwang SK, Nishi A, Satoh H, Okita TW (2010) Rice endosperm-specific plastidial alpha-glucan phosphorylase is important for synthesis of short-chain malto-oligosaccharides. Arch Biochem Biophys 495(1):82–92

    Article  CAS  PubMed  Google Scholar 

  • Jeon JS, Ryoo N, Hahn TR, Walia H, Nakamura Y (2010) Starch biosynthesis in cereal endosperm. Plant Physiol Biochem 48(6):383–392

    Article  CAS  PubMed  Google Scholar 

  • Kotov NV, Baker RE, Dawidov DA, Platov KV, Valeyev NV, Skorinkin AI, Maini PK (2007) A study of the temperature dependence of bienzyme systems and enzymatic chains. Comput Math Methods Med 8(2):93–112

    Article  Google Scholar 

  • Kruger NJ, Ap Rees T (1983) Properties of α-glucan phosphorylase from pea chloroplasts. Phytochemistry 22(9):1891–1898

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  PubMed  Google Scholar 

  • Li J, Baroja-Fernández E, Bahaji A, Muñoz FJ, Ovecka M, Montero M, Sesma MT, Alonso-Casajús N, Almagro G, Sánchez-López AM, Hidalgo M, Zamarbide M, Pozueta-Romero J (2013) Enhancing sucrose synthase activity results in increased levels of starch and ADP-glucose in maize (Zea mays L.) seed endosperms. Plant Cell Physiol 54(2):282–294

    Article  CAS  PubMed  Google Scholar 

  • Lin CT, Yeh KW, Lee PD, Su JC (1991) Primary structure of sweet potato starch phosphorylase deduced from its cDNA sequence. Plant Physiol 95(4):1250–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin YC, Chen HM, Chou IM, Chen AN, Chen CP, Young GH, Lin CT, Cheng CH, Chang SC, Juang RH (2012) Plastidial starch phosphorylase in sweet potato roots is proteolytically modified by protein-protein interaction with the 20S proteasome. PLoS ONE 7(4):e35336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Steichen JM, Yao J, Sharkey TD (2006) The role of cytosolic alpha-glucan phosphorylase in maltose metabolism and the comparison of amylomaltase in Arabidopsis and Escherichia coli. Plant Physiol 142(3):878–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mori H, Tanizawa K, Fukui T (1993a) A chimeric alpha-glucan phosphorylase of plant type L and H isozymes. Functional role of 78-residue insertion in type L isozyme. J Biol Chem 268(8):5574–5581

    CAS  PubMed  Google Scholar 

  • Mori H, Tanizawa K, Fukui T (1993b) Engineered plant phosphorylase showing extraordinarily high affinity for various alpha-glucan molecules. Protein Sci 2(10):1621–1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mu HH, Yu Y, Wasserman BP, Carman GM (2001) Purification and characterization of the maize amyloplast stromal 112-kDa starch phosphorylase. Arch Biochem Biophys 388(1):155–164

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Ono M, Utsumi C, Steup M (2012) Functional interaction between plastidial starch phosphorylase and starch branching enzymes from rice during the synthesis of branched maltodextrins. Plant Cell Physiol 53(5):869–878

    Article  CAS  PubMed  Google Scholar 

  • Nakano K, Fukui T (1986) The complete amino acid sequence of potato alpha-glucan phosphorylase. J Biol Chem 261(18):8230–8236

    CAS  PubMed  Google Scholar 

  • O’Neill EC, Rashid AM, Stevenson CEM, Hetru AC, Gunning AP, Rejzek M, Nepogodiev SA, Bornemann S, Lawson DM, Field RA (2014) Sugar-coated sensor chip and nanoparticle surfaces for the in vitro enzymatic synthesis of starch-like materials. Chem Sci 5(1):341–350

    Article  Google Scholar 

  • Preiss J, Okita TW, Greenberg E (1980) Characterization of the spinach leaf phosphorylases. Plant Physiol 66(5):864–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh H, Shibahara K, Tokunaga T, Nishi A, Tasaki M, Hwang SK, Okita TW, Kaneko N, Fujita N, Yoshida M, Hosaka Y, Sato A, Utsumi Y, Ohdan T, Nakamura Y (2008) Mutation of the plastidial α-glucan phosphorylase gene in rice affects the synthesis and structure of starch in the endosperm. Plant Cell 20(7):1833–1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimomura S, Nagai M, Fukui T (1982) Comparative glucan specificities of two types of spinach leaf phosphorylase. J Biochem 91(2):703–717

    CAS  PubMed  Google Scholar 

  • Smith AM, Zeeman SC, Smith SM (2005) Starch degradation. Annu Rev Plant Biol 56(1):73–98

    Article  CAS  PubMed  Google Scholar 

  • Sonnewald U, Basner A, Greve B, Steup M (1995) A second L-type isozyme of potato glucan phosphorylase: cloning, antisense inhibition and expression analysis. Plant Mol Biol 27(3):567–576

    Article  CAS  PubMed  Google Scholar 

  • Takaha T, Critchley J, Okada S, Smith SM (1998) Normal starch content and composition in tubers of antisense potato plants lacking D-enzyme (4-a-glucanotransferase). Planta 205:445–451

    Article  CAS  Google Scholar 

  • Tetlow IJ, Wait R, Lu Z, Akkasaeng R, Bowsher CG, Esposito S, Kosar-Hashemi B, Morell MK, Emes MJ (2004) Protein phosphorylation in amyloplasts regulates starch branching enzyme activity and protein-protein interactions. Plant Cell 16(3):694–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tickle P, Burrell MM, Coates SA, Emes MJ, Tetlow IJ, Bowsher CG (2009) Characterization of plastidial starch phosphorylase in Triticum aestivum L. endosperm. J Plant Physiol 166(14):1465–1478

    Article  CAS  PubMed  Google Scholar 

  • Tiessen A, Nerlich A, Faix B, Hümmer C, Fox S, Trafford K, Weber H, Weschke W, Geigenberger P (2012) Subcellular analysis of starch metabolism in develo** barley seeds using a non-aqueous fractionation method. J Exp Bot 63(5):2071–2087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuncel A, Kawaguchi J, Ihara Y, Matsusaka H, Nishi A, Nakamura T, Kuhara S, Hirakawa H, Nakamura Y, Cakir B, Nagamine A, Okita TW, Hwang SK, Satoh H (2014) The rice endosperm ADP-glucose pyrophosphorylase large subunit is essential for optimal catalysis and allosteric regulation of the heterotetrameric enzyme. Plant Cell Physiol 55(6):1169–1183

    Article  CAS  PubMed  Google Scholar 

  • Venselaar H, Joosten RP, Vroling B, Baakman CA, Hekkelman ML, Krieger E, Vriend G (2010) Homology modelling and spectroscopy, a never-ending love story. Eur Biophys J 39(4):551–563

    Article  PubMed  PubMed Central  Google Scholar 

  • Young GH, Chen HM, Lin CT, Tseng KC, Wu JS, Juang RH (2006) Site-specific phosphorylation of L-form starch phosphorylase by the protein kinase activity from sweet potato roots. Planta 223(3):468–478

    Article  CAS  PubMed  Google Scholar 

  • Zeeman SC, Thorneycroft D, Schupp N, Chapple A, Weck M, Dunstan H, Haldimann P, Bechtold N, Smith AM, Smith SM (2004) Plastidial alpha-glucan phosphorylase is not required for starch degradation in Arabidopsis leaves but has a role in the tolerance of abiotic stress. Plant Physiol 135(2):849–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from the Department of Biotechnology, Government of India as DBT Overseas Associateship (S.S.), from the Japan Society for the Promotion of Science (H.S.), from the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy (Grant DE-FG02-12ER20216 to T.W.O, S.K.H., and B.C.) and from Project 0590, Agricultural Research Center, College of Agricultural, Human, and Natural Resource Sciences, Washington State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas W. Okita.

Additional information

Seon-Kap Hwang and Salvinder Singh have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 621 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, SK., Singh, S., Cakir, B. et al. The plastidial starch phosphorylase from rice endosperm: catalytic properties at low temperature. Planta 243, 999–1009 (2016). https://doi.org/10.1007/s00425-015-2461-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2461-7

Keywords

Navigation