Log in

Basal release of 6-cyanodopamine from rat isolated vas deferens and its role on the tissue contractility

  • Organ Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

6-Cyanodopamine is a novel catecholamine released from rabbit isolated heart. However, it is not known whether this catecholamine presents any biological activity. Here, it was evaluated whether 6-cyanodopamine (6-CYD) is released from rat vas deferens and its effect on this tissue contractility. Basal release of 6-CYD, 6-nitrodopamine (6-ND), 6-bromodopamine, 6-nitrodopa, and 6-nitroadrenaline from vas deferens were quantified by LC-MS/MS. Electric-field stimulation (EFS) and concentration-response curves to noradrenaline, adrenaline, and dopamine of the rat isolated epididymal vas deferens (RIEVD) were performed in the absence and presence of 6-CYD and /or 6-ND. Expression of tyrosine hydroxylase was assessed by immunohistochemistry. The rat isolated vas deferens released significant amounts of both 6-CYD and 6-ND. The voltage-gated sodium channel blocker tetrodotoxin had no effect on the release of 6-CYD, but it virtually abolished 6-ND release. 6-CYD alone exhibited a negligible RIEVD contractile activity; however, at 10 nM, 6-CYD significantly potentiated the noradrenaline- and EFS-induced RIEVD contractions, whereas at 10 and 100 nM, it also significantly potentiated the adrenaline- and dopamine-induced contractions. The potentiation of noradrenaline- and adrenaline-induced contractions by 6-CYD was unaffected by tetrodotoxin. Co-incubation of 6-CYD (100 pM) with 6-ND (10 pM) caused a significant leftward shift and increased the maximal contractile responses to noradrenaline, even in the presence of tetrodotoxin. Immunohistochemistry revealed the presence of tyrosine hydroxylase in both epithelial cell cytoplasm of the mucosae and nerve fibers of RIEVD. The identification of epithelium-derived 6-CYD and its remarkable synergism with catecholamines indicate that epithelial cells may regulate vas deferens smooth muscle contractility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Aboud R, Shafii M, Docherty JR (1993) Investigation of the subtypes of alpha 1-adrenoceptor mediating contractions of rat aorta, vas deferens and spleen. Br J Pharmacol 109(1):80–87. https://doi.org/10.1111/j.1476-5381.1993.tb13534.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Amobi NI, Chung IP, Smith IC (2006) Attenuation of contractility in rat epididymal vas deferens by Rho kinase inhibitors. Auton Autacoid Pharmacol 26(2):169–181. https://doi.org/10.1111/j.1474-8673.2006.00367.x

    Article  CAS  PubMed  Google Scholar 

  3. Andersen ML. Normativas do CONCEA para a Produção, Manutenção ou Utilização Animal em atividades de Ensino ou Pesquisa Científica. Leis, Decretos, Portarias, Resoluções Normativas e Orientações técnicas. 3ª Edição. Brasília, v. 26, 2016.

  4. Anseeuw K, Delvau N, Burillo-Putze G, De Iaco F, Geldner G, Holmström P, Lambert Y, Sabbe M (2013) Cyanide poisoning by fire smoke inhalation: a European expert consensus. Eur J Emerg Med 20(1):2–9. https://doi.org/10.1097/MEJ.0b013e328357170b

    Article  PubMed  Google Scholar 

  5. Anton PG, McGrath JC (1977) Further evidence for adrenergic transmission in the human vas deferens. J Physiol 273(1):45–55. https://doi.org/10.1113/jphysiol.1977.sp012080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Basile B, Lazcano A, Oró J (1984) Prebiotic syntheses of purines and pyrimidines. Adv Space Res 4(12):125–131. https://doi.org/10.1016/0273-1177(84)90554-4

    Article  CAS  PubMed  Google Scholar 

  7. Baskin SI, Brewer TG (1997) Cyanide Poisoning, in Medical Aspects of Chemical and Biological Warfare. In: Zajtchuk R, Bellamy RF, Sidell FR, Takefugi ET, Franz DR (eds) Office of the Surgeon General. Department of the Army, United States, pp 271–286

    Google Scholar 

  8. Bönisch H, Trendelenburg U. The mechanism of action of indirectly acting sympathomimetic amines. In: Trendelenburg U, Weiner N (eds) Catecholamines - Handbook of experimental pharmacology. Springer, Berlin Heidelberg New York, 1988; 90(1) 247 – 277

    Google Scholar 

  9. Bradley AB, Morgan KG (1987) Alterations in cytoplasmic calcium sensitivity during porcine coronary artery contractions as detected by aequorin. J Physiol 385:437–448. https://doi.org/10.1113/jphysiol.1987.sp016500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Britto-Júnior J, da Silva-Filho WP, Amorim AC, Campos R, Moraes MO, Moraes MEA, Fregonesi A, Monica FZ, Antunes E, De Nucci G (2022a) 6-nitrodopamine is a major endogenous modulator of human vas deferens contractility. Andrology 10(8):1540–1547. https://doi.org/10.1111/andr.13263

    Article  CAS  PubMed  Google Scholar 

  11. Britto-Júnior J, Lima AT, Campos R, Gião AA, Mendes GD, Ferreira-Novaes Silva LP, Fregonesi A, Pupo AS, Antunes E, De Nucci G (2023a) 6-Nitrodopamine potentiates contractions of rat isolated vas deferens induced by noradrenaline, adrenaline, dopamine and electric field stimulation. Naunyn Schmiedeberg's Arch Pharmacol 396(10):2555–2570. https://doi.org/10.1007/s00210-023-02478-6

    Article  CAS  Google Scholar 

  12. Britto-Júnior J, Lima AT, Fuguhara V, Monica FZ, Antunes E, De Nucci G (2023b) Investigation on the positive chronotropic action of 6-nitrodopamine in the rat isolated atria. Naunyn Schmiedeberg's Arch Pharmacol 396(6):1279–1290. https://doi.org/10.1007/s00210-023-02394-9

    Article  CAS  Google Scholar 

  13. Britto-Júnior J, Nacário Silva SG, Lima AT, Fuguhara V, Andrade LB, Mendes GD, Peterson LW, Chiavegatto S, Antunes E, De Nucci G (2024a) The pivotal role of neuronal nitric oxide synthase in the release of 6-nitrodopamine from mouse isolated vas deferens. Nitric Oxide 143:1–8. https://doi.org/10.1016/j.niox.2023.12.002

    Article  CAS  PubMed  Google Scholar 

  14. Britto-Júnior J, Pinheiro DHA, Justo AFO, Figueiredo Murari GM, Campos R, Mariano FV, de Souza VB, Schenka AA, Mónica FZ, Antunes E, De Nucci G (2020) Endothelium-derived dopamine modulates EFS-induced contractions of human umbilical vessels. Pharmacol Res Perspect 8(4):e00612. https://doi.org/10.1002/prp2.612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Britto-Júnior J, Ribeiro A, **menes L, Lima AT, Jacintho FF, Fregonesi A, Mónica FZ, Antunes E, De Nucci G (2022b) Alpha1-adrenergic antagonists block 6-nitrodopamine contractions on the rat isolated epididymal vas deferens. Eur J Pharmacol 915:174716. https://doi.org/10.1016/j.ejphar.2021.174716

    Article  CAS  PubMed  Google Scholar 

  16. Britto-Júnior J, Uramoto EHS, Lima AT, Ribeiro LF, de Souza VB, Schenka AA, de Almeida Magalhães JC, Antunes E, Fregonesi A, De Nucci G (2024) Epithelium-derived 6-nitrodopamine modulates noradrenaline-induced contractions in human seminal vesicles. Life Sci 348:122695. https://doi.org/10.1016/j.lfs.2024.122695

    Article  CAS  PubMed  Google Scholar 

  17. Britto-Júnior J, **menes L, Ribeiro A, Fregonesi A, Campos R, Ricardo de Almeida Kiguti L, Mónica FZ, Antunes E, De Nucci G (2021a) 6-Nitrodopamine is an endogenous mediator of rat isolated epididymal vas deferens contractions induced by electric-field stimulation. Eur J Pharmacol 911:174544. https://doi.org/10.1016/j.ejphar.2021.174544

    Article  CAS  PubMed  Google Scholar 

  18. Burnstock G (1986) Autonomic neuromuscular junctions: current developments and future directions. J Anat 146:1–30

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Burnstock G (1995) Noradrenaline and ATP: cotransmitters and neuromodulators. J Physiol Pharmacol 46(4):365–384

    CAS  PubMed  Google Scholar 

  20. Canessa De Scarnati O, Lapetina EG (1974) Adrenergic stimulation of phosphatidylinositol label- ling in rat vas deferens. Biochim Biophys Acta 360:298–305

    Article  CAS  PubMed  Google Scholar 

  21. Elbadawi A, Goodman DC (1980) Autonomic innervation of accessory male genital glands. Male accessory sex glands:101–128

  22. Elwan MA, Thangavel R, Ono F, Sakuragawa N (1998) Synthesis and release of catecholamines by cultured monkey amniotic epithelial cells. J Neurosci Res 53(1):107–113. https://doi.org/10.1002/(SICI)1097-4547(19980701)53:1<107::AID-JNR11>3.0.CO;2-6

    Article  CAS  PubMed  Google Scholar 

  23. Fasco MJ, Stack RF, Lu S, Hauer CR 3rd, Schneider E, Dailey M, Aldous KM (2011) Unique cyanide adduct in human serum albumin: potential as a surrogate exposure marker. Chem Res Toxicol 24(4):505–514. https://doi.org/10.1021/tx100344e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Foley KF, Cozzi NV (2002) Inhibition of transport function and desipramine binding at the human noradrenaline transporter by N-ethylmaleimide and protection by substrate analogs. Naunyn Schmiedeberg's Arch Pharmacol 365(6):457–461. https://doi.org/10.1007/s00210-002-0532-3

    Article  CAS  Google Scholar 

  25. Fox AW, Abel PW, Minneman KP (1985) Activation of alpha 1-adrenoceptors increases [3H] inositol metabolism in rat vas deferens and caudal artery. Eur J Pharmacol 116(1-2):145–152. https://doi.org/10.1016/0014-2999(85)90195-5

    Article  CAS  PubMed  Google Scholar 

  26. Hay DW, Wadsworth RM (1984) Effects of KCl on 45Ca uptake and efflux in the rat vas deferens. Br J Pharmacol 81(3):441–447. https://doi.org/10.1111/j.1476-5381.1984.tb10096.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Illes P, Meier C, Starke K (1984) Tetrodotoxin-resistant release of 3H-noradrenaline from the mouse vas deferens by high intensity electrical stimulation. Neuroscience 11(3):715–721. https://doi.org/10.1016/0306-4522(84)90054-x

    Article  CAS  PubMed  Google Scholar 

  28. Júnior GQ, Britto-Júnior J, Magalhaes TB, Campos R, Nyamkondiwa KL, Klugh KL, Peterson LW, Corvino A, Sparaco R, Frecentese F, Caliendo G, De Nucci G (2023) Measurement of 6-cyanodopamine, 6-nitrodopa, 6-nitrodopamine and 6-nitroadrenaline by LC-MS/MS in Krebs-Henseleit solution. Assessment of basal release from rabbit isolated right atrium and ventricles. Biomed Chromatogr 37(9):e5691. https://doi.org/10.1002/bmc.5691

    Article  CAS  PubMed  Google Scholar 

  29. Kakishita K, Elwan MA, Nakao N, Itakura T, Sakuragawa N (2000) Human amniotic epithelial cells produce dopamine and survive after implantation into the striatum of a rat model of Parkinson's disease: a potential source of donor for transplantation therapy. Exp Neurol 165(1):27–34. https://doi.org/10.1006/exnr.2000.7449

    Article  CAS  PubMed  Google Scholar 

  30. Kawada T, Yamazaki T, Akiyama T, Sato T, Shishido T, Inagaki M, Tatewaki T, Yanagiya Y, Sugimachi M, Sunagawa K (2000) Cyanide intoxication induced exocytotic epinephrine release in rabbit myocardium. J Auton Nerv Syst 80(3):137–141. https://doi.org/10.1016/s0165-1838(00)00086-2

    Article  CAS  PubMed  Google Scholar 

  31. Kitazawa T, Masuo M, Somlyo AP (1991) G protein-mediated inhibition of myosin light-chain phosphatase in vascular smooth muscle. Proc Natl Acad Sci USA 88(20):9307–9310. https://doi.org/10.1073/pnas.88.20.9307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kurz T, Richardt G, Hagl S, Seyfarth M, Schömig A (1995) Two different mechanisms of noradrenaline release during normoxia and simulated ischemia in human cardiac tissue. J Mol Cell Cardiol 27(5):1161–1172. https://doi.org/10.1016/0022-2828(95)90052-7

    Article  CAS  PubMed  Google Scholar 

  33. Lewis JL, Rhoades CE, Gervasi PG, Griffith WC, Dahl AR (1991) The cyanide-metabolizing enzyme rhodanese in human nasal respiratory mucosa. Toxicol Appl Pharmacol 108(1):114–120. https://doi.org/10.1016/0041-008x(91)90274-i

    Article  CAS  PubMed  Google Scholar 

  34. Lima AT, Amorim AC, Britto-Júnior J, Campitelli RR, Fregonesi A, Mónica FZ, Antunes E, De Nucci G (2022) β1- and β12-adrenergic receptor antagonists block 6-nitrodopamine-induced contractions of the rat isolated epididymal vas deferens. Naunyn Schmiedeberg's Arch Pharmacol 395(10):1257–1268. https://doi.org/10.1007/s00210-022-02268-6

    Article  CAS  Google Scholar 

  35. Matthews CN, Minard RD (2006) Hydrogen cyanide polymers, comets and the origin of life. Faraday Discuss 133:393–401. https://doi.org/10.1039/b516791d

    Article  CAS  PubMed  Google Scholar 

  36. Ming M, Li X, Fan X, Yang D, Li L, Chen S, Gu Q, Le W (2009) Retinal pigment epithelial cells secrete neurotrophic factors and synthesize dopamine: possible contribution to therapeutic effects of RPE cell transplantation in Parkinson's disease. J Transl Med 7:53. https://doi.org/10.1186/1479-5876-7-53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mitchell JA, Sheng H, Förstermann U, Murad F (1991) Characterization of nitric oxide synthases in non-adrenergic non-cholinergic nerve containing tissue from the rat anococcygeus muscle. Br J Pharmacol 104(2):289–291. https://doi.org/10.1111/j.1476-5381.1991.tb12422.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Morellini N, Phillips JK, Wall RV, Drummond PD (2019) Expression of the noradrenaline transporter in the peripheral nervous system. J Chem Neuroanat 104:101742. https://doi.org/10.1016/j.jchemneu.2019.101742

    Article  CAS  PubMed  Google Scholar 

  39. Mullaney I, Carr IC, Burt AR, Wilson M, Anderson NG, Milligan G (1997) Agonist-mediated tyrosine phosphorylation of isoforms of the shc adapter protein by the delta opioid receptor. Cell Signal 9(6):423–429. https://doi.org/10.1016/s0898-6568(96)00188-x

    Article  CAS  PubMed  Google Scholar 

  40. Muramatsu I, Oshita M, Ohmura T, Kigoshi S, Akino H, Gobara M, Okada K (1994) Pharmacological characterization of alpha 1-adrenoceptor subtypes in the human prostate: functional and binding studies. Br J Urol 74(5):572–578. https://doi.org/10.1111/j.1464-410x.1994.tb09186.x

    Article  CAS  PubMed  Google Scholar 

  41. Nyamkondiwa K, Squires T, Jones P, Colabroy KL, Peterson LW (2022) Insight into L-DOPA dioxygenase mechanism with 6-substituted L-DOPA derivatives. FASEB J 36(S1)

  42. Oro J, Kamat SS (1961) Amino-acid synthesis from hydrogen cyanide under possible primitive earth conditions. Nature 190:442–443. https://doi.org/10.1038/190442a0

    Article  CAS  PubMed  Google Scholar 

  43. Park BK, Haynes BP, Sheridan SA, Nowell PT (1983) Stereoselectivity of catecholamines: differential effects of cocaine and desipramine on catecholamine-induced contractions of the rat isolated vas deferens. J Pharm Pharmacol 35(6):373–377. https://doi.org/10.1111/j.2042-7158.1983.tb02959.x

    Article  CAS  PubMed  Google Scholar 

  44. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, Clark A, Cuthill IC, Dirnagl U, Emerson M, Garner P, Holgate ST, Howells DW, Karp NA, Lazic SE, Lidster K, CJ MC, Macleod M et al (2020) The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol 18(7):e3000410. https://doi.org/10.1371/journal.pbio.3000410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ribeiro LF, Babadopulos T, Oliveira MG, Nishimaru F, Zatz R, Elias RM, Moraes O, Moraes E, Peterson LW, De Nucci G (2024) A LC-MS/MS method for the simultaneous determination of 6-cyanodopamine, 6-nitrodopamine, 6-nitrodopa, 6-nitroadrenaline, and 6-bromodopamine in human plasma and its clinical application in patients with chronic kidney disease. Biomed Chromatogr

  46. Rickert WS, Robinson JC, Young JC (1980) Estimating the hazards of "less hazardous" cigarettes. I. Tar, nicotine, carbon monoxide, acrolein, hydrogen cyanide, and total aldehyde deliveries of Canadian cigarettes. J Toxicol Environ Health 6(2):351–365. https://doi.org/10.1080/15287398009529856

    Article  CAS  PubMed  Google Scholar 

  47. Rote JC, Malkowski SN, Cochrane CS, Bailey GE, Brown NS, Cafiero M, Peterson LW (2017) Catechol reactivity: Synthesis of dopamine derivatives substituted at the 6-position. Synth Commun 47(5):435–441

    Article  CAS  Google Scholar 

  48. Rubin RP (1970) The role of calcium in the release of neurotransmitter substances and hormones. Pharmacol Rev 22(3):389–428

    CAS  PubMed  Google Scholar 

  49. Schömig A, Fischer S, Kurz T, Richardt G, Schömig E (1987) Nonexocytotic release of endogenous noradrenaline in the ischemic and anoxic rat heart: mechanism and metabolic requirements. Circ Res 60(2):194–205. https://doi.org/10.1161/01.res.60.2.194

    Article  PubMed  Google Scholar 

  50. Schömig E, Schönfeld CL, Halbrügge T, Graefe KH, Trendelenburg U (1990) The heterogeneity of the neuronal distribution of exogenous noradrenaline in the rat vas deferens. Naunyn Schmiedeberg's Arch Pharmacol 342(2):160–170. https://doi.org/10.1007/BF00166959

    Article  Google Scholar 

  51. Schroeter S, Apparsundaram S, Wiley RG, Miner LH, Sesack SR, Blakely RD (2000) Immunolocalization of the cocaine- and antidepressant-sensitive l-norepinephrine transporter. J Comp Neurol 420(2):211–232

    Article  CAS  PubMed  Google Scholar 

  52. Somlyo AP, Somlyo AV (1994) Signal transduction and regulation in smooth muscle. Nature 372(6503):231–236. https://doi.org/10.1038/372231a0

    Article  CAS  PubMed  Google Scholar 

  53. Steers WD (1994) Physiology of the vas deferens. World J Urol 12(5):281–285. https://doi.org/10.1007/BF00191208

    Article  CAS  PubMed  Google Scholar 

  54. Swedin G, Lindholmer C (1974) Permanent infertility of the male rat after denervation of the vas deferens and the accessory genital glands. Andrologia 6(2):103–110. https://doi.org/10.1111/j.1439-0272.1974.tb01602.x

    Article  CAS  PubMed  Google Scholar 

  55. Uwakwe AA, Monanu MO, Anosike EO (1991) Whole blood cyanide levels of mainly dietary origin in a human population sample in Port Harcourt. Nigeria Plant Foods Hum Nutr 41(2):117–124. https://doi.org/10.1007/BF02194080

    Article  CAS  PubMed  Google Scholar 

  56. Veith RC, Lewis N, Linares OA, Barnes RF, Raskind MA, Villacres EC, Murburg MM, Ashleigh EA, Castillo S, Peskind ER et al (1994) Sympathetic nervous system activity in major depression. Basal and desipramine-induced alterations in plasma norepinephrine kinetics. Arch Gen Psychiatry 51(5):411–422. https://doi.org/10.1001/archpsyc.1994.03950050071008

    Article  CAS  PubMed  Google Scholar 

  57. Witcher DR, De Waard M, Campbell KP (1993) Characterization of the purified N-type Ca2+ channel and the cation sensitivity of omega-conotoxin GVIA binding. Neuropharmacology 32(11):1127–1139. https://doi.org/10.1016/0028-3908(93)90007-p

    Article  CAS  PubMed  Google Scholar 

  58. Young MA (1965) Health Hazards Of Electroplating. J Occup Med 7:348–352. https://doi.org/10.1097/00043764-196507000-00008

    Article  CAS  PubMed  Google Scholar 

  59. Zatz R, De Nucci G (2024) Endothelium-Derived Dopamine and 6-Nitrodopamine in the Cardiovascular System. Physiology (Bethesda) 39(1):44–59. https://doi.org/10.1152/physiol.00020.2023

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Sao Paulo Research Foundation (FAPESP) grants 2021/14414-8 (JBJ), 2017/15175-1 (EA); 2019/16805-4 (GDN).

National Council for Scientific and Technological Development (CNPq) grant 303839/2019-8 (GDN).

Funding

Coordination for the Improvement of Higher Education Personnel (CAPES) grant 001(CFSDP). Sao Paulo Research Foundation (FAPESP) grants 2021/14414-8 (JBJ), 2022/13062-3 (JFAB), 2021/13726-6 (VBS), 2017/15175-1 (EA); 2019/16805-4 (GDN).

National Council for Scientific and Technological Development (CNPq) grant 303839/2019-8 (GDN)

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: JBJ, GDN. Data curation: JBJ, GDN. Formal analysis: GDN. Funding acquisition: EA, GDN. Investigation: CFSDP, JEMJ, JBJ, JFAB, VBZ, AAD. Methodology: CFSDP, JBJ, GDN. Project administration: GDN, JBJ. Supervision: EA and GDN. Visualization: AF,LWP, EA, GDN. Writing – original draft: JBJ, GDN.

Corresponding author

Correspondence to José Britto-Júnior.

Ethics declarations

Ethical approval

All experimental protocols were authorized by the Ethics Committee in Animal Use of UNICAMP (CEUA/UNICAMP, protocol numbers No. 5987-1/2022).

Consent to participate

Not applicable.

Consent to publish

The authors authorize the submission and publication of this article in Pflügers Archiv: European Journal of Physiology.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(TIF 4744 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pozzo, C.F.S.D., Junior, J.E.M., Britto-Júnior, J. et al. Basal release of 6-cyanodopamine from rat isolated vas deferens and its role on the tissue contractility. Pflugers Arch - Eur J Physiol (2024). https://doi.org/10.1007/s00424-024-02985-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00424-024-02985-2

Keywords

Navigation