Log in

Physiological and perceptual responses to acute arm cranking with blood flow restriction

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Introduction

Lower-body aerobic exercise with blood flow restriction (BFR) offers a unique approach for stimulating improvements in muscular function and aerobic capacity. While there are more than 40 reports documenting acute and chronic responses to lower-body aerobic exercise with BFR, responses to upper-body aerobic exercise with BFR are not clearly established.

Purpose

We evaluated acute physiological and perceptual responses to arm cranking with and without BFR.

Methods

Participants (N = 10) completed 4 arm cranking (6 × 2 min exercise, 1 min recovery) conditions: low-intensity at 40%VO2peak (LI), low-intensity at 40%VO2peak with BFR at 50% of arterial occlusion pressure (BFR50), low-intensity at 40%VO2peak with BFR at 70% of arterial occlusion pressure (BFR70), and high-intensity at 80%VO2peak (HI) while tissue oxygenation, cardiorespiratory, and perceptual responses were assessed.

Results

During exercise, tissue saturation for BFR50 (54 ± 6%), BFR70 (55 ± 6%), and HI (54 ± 8%) decreased compared to LI (61 ± 5%, all P < 0.01) and changes in deoxyhemoglobin for BFR50 (11 ± 4), BFR70 (15 ± 6), and HI (16 ± 10) increased compared to LI (4 ± 2, all P < 0.01). During recovery intervals, tissue saturation for BFR50 and BFR70 decreased further and deoxyhemoglobin for BFR50 and BFR70 increased further (all P < 0.04). Heart rate for BFR70 and HI increased by 9 ± 9 and 50 ± 15b/min, respectively, compared to LI (both P < 0.02). BFR50 (8 ± 2, 1.0 ± 1.0) and BFR70 (10 ± 2, 2.1 ± 1.4) elicited greater arm-specific perceived exertion (6–20 scale) and pain (0–10 scale) compared to LI (7 ± 1, 0.2 ± 0.5, all P < 0.05) and pain for BFR70 did not differ from HI (1.7 ± 1.9).

Conclusion

Arm cranking with BFR decreased tissue saturation and increased deoxyhemoglobin without causing excessive cardiorespiratory strain and pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance procedure

AOP:

Arterial occlusion pressure

BFR:

Blood flow restriction

BFR50:

Low-intensity arm cranking at 40% VO2peak with BFR set at 50% AOP

BFR70:

Low-intensity arm cranking at 40% VO2peak with BFR set at 70% AOP

LI:

Low-intensity arm cranking at 40% VO2peak without BFR

HI:

High-intensity arm cranking at 80% VO2peak without BFR

RPEarms :

Rating of arm-specific perceived exertion

RPEbody :

Rating of whole-body perceived exertion

VO2peak :

Peak oxygen consumption

References

  • Abe T, Fujita S, Nakajima T, Sakamaki M et al (2010) Effects of low-intensity cycle training with restricted leg blood flow on thigh muscle volume and VO2max in young men. J Sports Sci Med 9:452–458

    PubMed  PubMed Central  Google Scholar 

  • Barstow TJ (2019) Understanding near infrared spectroscopy and its application to skeletal muscle research. J Appl Physiol 126:1360–1376

    Article  CAS  PubMed  Google Scholar 

  • Bennett H, Slattery F (2019) Effects of blood flow restriction training on aerobic capacity and performance: a systematic review. J Strength Cond Res 33:572–583

    Article  PubMed  Google Scholar 

  • Bezerra de Morais AT, Cerqueira MS, Sales RM et al (2017) Upper limbs total occlusion pressure assessment: Doppler ultrasound reproducibility and determination of predictive variables. Clin Physiol Funct Imaging 37:437–441

    Article  PubMed  Google Scholar 

  • Biazon T, Ugrinowitsch C, Soligon SD et al (2019) The association between muscle deoxygenation and muscle hypertrophy to blood flow restricted training performed at high and low loads. Front Physiol 10:446

    Article  PubMed  PubMed Central  Google Scholar 

  • Borg G (1970) Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med 2:92–98

    Article  CAS  PubMed  Google Scholar 

  • Cahalin LP, Formiga MF, Anderson B et al (2022) A call to action for blood flow restriction training in older adults with or susceptible to sarcopenia: a systematic review and meta-analysis. Front Physiol 13:924614

    Article  PubMed  PubMed Central  Google Scholar 

  • Cardoso RK, Araujo AM, Del Vechio FB et al (2020) Intradialytic exercise with blood flow restriction is more effective than conventional exercise in improving walking endurance in hemodialysis patients: a randomized controlled trial. Clin Rehabil 34:91–98

    Article  PubMed  Google Scholar 

  • Casey S, Lanting S, Oldmeadow C et al (2019) The reliability of the ankle brachial index: a systematic review. J Foot Ankle Res 12:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Cayot TE, Lauver JD, Silette C et al (2016) Effects of blood flow restriction duration on muscle activation and microvascular oxygenation during low-volume isometric exercise. Clin Physiol Funct Imaging 36:298–305

    Article  CAS  PubMed  Google Scholar 

  • Centner C, Wiegel P, Gollhofer A et al (2019) Effects of blood flow restriction training on muscular strength and hypertrophy in older individuals: a systematic review and meta-analysis. Sports Med 49:95–108

    Article  PubMed  Google Scholar 

  • Clarkson MJ, Conway L, Warmington SA (2017) Blood flow restriction walking and physical function in older adults: a randomized control trial. J Sci Med Sport 20:1041–1046

    Article  PubMed  Google Scholar 

  • Chiou SY, Clarke E, Lam C et al (2022) Effects of arm-crank exercise on fitness and health in adults with chronic spinal cord injury: a systematic review. Front Physiol 13:831372

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Erlbaum, Hillsdale

    Google Scholar 

  • Conceição MS, Ugrinowitsch C (2019) Exercise with blood flow restriction: an effective alternative for the non-pharmaceutical treatment for muscle wasting. J Cachexia Sarcopenia Muscle 10:257–262

    Article  PubMed  PubMed Central  Google Scholar 

  • Corvino RB, Rossiter HB, Loch T et al (2017) Physiological responses to interval endurance exercise at different levels of blood flow restriction. Eur J Appl Physiol 117:39–52

    Article  PubMed  Google Scholar 

  • Cristina-Oliveira M, Meireles K, Spranger MD et al (2020) Clinical safety of blood flow-restricted training? A comprehensive review of altered muscle metaboreflex in cardiovascular disease during ischemic exercise. Am J Physiol Heart Circ Physiol 318:H90–H109

    Article  CAS  PubMed  Google Scholar 

  • Dankel SJ, Jessee MB, Abe T et al (2016) The effects of blood flow restriction on upper-body musculature located distal and proximal to applied pressure. Sports Med 46:23–33

    Article  PubMed  Google Scholar 

  • De Oliveira MF, Caputo F, Corvino RB et al (2016) Short-term low-intensity blood flow restricted interval training improves both aerobic fitness and muscle strength. Scand J Med Sci Sports 26:1017–1025

    Article  PubMed  Google Scholar 

  • Elmer SJ, Anderson DJ, Wakeham TR et al (2017) Chronic eccentric arm cycling improves maximum upper-body strength and power. Euro J Appl Physiol 117:1473–1483

    Article  CAS  Google Scholar 

  • Franklin BA (1985) Exercise, testing, and arm ergometry. Sports Med 2:110–119

    Article  Google Scholar 

  • Frechette ML, Scott BR, Vallence A et al (2023) Acute physiological responses to steady-state arm cycling ergometry with and without blood flow restriction. Eur J Appl Physiol 123:901–909

    Article  CAS  PubMed  Google Scholar 

  • Formiga MF, Fay R, Hutchinson S et al (2020) Effect of aerobic exercise training with and without blood flow restriction on aerobic capacity in healthy young adults: a systematic review with meta-analysis. Int J Sports Phys Ther 15:175–187

    Article  PubMed  PubMed Central  Google Scholar 

  • Grotle AK, Macefield VG, Farquhar WB et al (2020) Recent advances in exercise pressor reflex function in health and disease. Auton Neurosci 228:102698

    Article  PubMed  PubMed Central  Google Scholar 

  • Hackney KJ, Everett M, Scott J et al (2012) Blood flow-restricted exercise in space. Extrem Physiol Med 1:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Hart S, Drevets K, Alford M (2013) A method-comparison study regarding the validity and reliability of the lactate plus analyzer. BMJ Open 3:e001899

    Article  PubMed  PubMed Central  Google Scholar 

  • Held S, Behringer M, Donath L (2020) Low intensity rowing with blood flow restriction over 5 weeks increases V̇O2max in elite rowers: a randomized controlled trial. J Sci Med Sport 23:304–308

    Article  PubMed  Google Scholar 

  • Hermens HJ, Freriks B, Disselhorst-Klug C et al (2000) Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 10:361–374

    Article  CAS  PubMed  Google Scholar 

  • Hinkle DE, Wiersma W, Jurs SG (2002) Applied statistics for the behavioral sciences, 5th edn. Houghton Mifflin, Boston

    Google Scholar 

  • Hughes L, Rosenblatt B, Gissane C et al (2018) Interface pressure, perceptual, and mean arterial pressure responses to different blood flow restriction systems. Scand J Med Sci Sports 28:1757–1765

    Article  CAS  PubMed  Google Scholar 

  • Hughes L, Hackney KJ, Patterson SD (2022) Optimization of exercise countermeasures to spaceflight using blood flow restriction. Aerosp Med Hum Perform 93:32–45

    Article  PubMed  Google Scholar 

  • Kilgas MA, McDaniel J, Stavres J et al (2019) Limb blood flow and tissue perfusion during exercise with blood flow restriction. Eur J Appl Physiol 119:377–387

    Article  PubMed  Google Scholar 

  • Kilgas MA, Yoon T, McDaniel J et al (2022) Physiological responses to acute cycling with blood flow restriction. Front Physiol 13:800155

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamberti N, Straudi S, Donadi M et al (2020) Effectiveness of blood flow-restricted slow walking on mobility in severe multiple sclerosis: a pilot randomized trial. Scand J Med Sci Sports 30:1999–2009

    Article  PubMed  Google Scholar 

  • Lauver JD, Cayot TE, Rotarius T et al (2017) The effect of eccentric exercise with blood flow restriction on neuromuscular activation, microvascular oxygenation, and the repeated bout effect. Eur J Appl Physiol 117:1005–1015

    Article  CAS  PubMed  Google Scholar 

  • Loenneke JP, Fahs CA, Rossow L et al (2012) The anabolic benefits of venous blood flow restriction training may be induced by muscle cell swelling. Med Hypotheses 78:151–154

    Article  CAS  PubMed  Google Scholar 

  • Lucero AA, Addae G, Lawrence W et al (2018) Reliability of muscle blood flow and oxygen consumption response from exercise using near-infrared spectroscopy. Exp Physiol 103:90–100

    Article  CAS  PubMed  Google Scholar 

  • Malhotra A, Cohen D, Syms C et al (2002) Blood pressure changes in the leg on standing. J Clin Hypertens (greenwich) 4:350–354

    Article  PubMed  Google Scholar 

  • May AK, Brandner CR, Warmington SA (2017) Hemodynamic responses are reduced with aerobic compared with resistance blood flow restriction exercise. Physiol Rep 5:e13142

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahoney SJ, Dicks ND, Lyman KJ et al (2019) Acute cardiovascular, metabolic, and muscular responses to blood flow restricted rowing exercise. Aerosp Med Hum Perform 90:440–446

    Article  PubMed  Google Scholar 

  • Mendonca GV, Vaz JR, Teixeira MS et al (2014) Metabolic cost of locomotion during treadmill walking with blood flow restriction. Clin Physiol Funct Imaging 34:308–316

    Article  PubMed  Google Scholar 

  • Moore C, Dobson A, Kinagi M et al (2008) Comparison of blood pressure measured at the arm, ankle and calf. Anaesthesia 63:1327–1331

    Article  CAS  PubMed  Google Scholar 

  • Neville V, Pain MTG, Folland JP (2009) Aerobic power and peak power of elite American’s Cup sailors. Euro J Appl Physiol 106:149–157

    Article  Google Scholar 

  • Ozaki H, Sakamaki M, Yasuda T et al (2011) Increases in thigh muscle volume and strength by walk training with leg blood flow reduction in older participants. J Gerontol A Biol Sci Med Sci 66:257–263

    Article  PubMed  Google Scholar 

  • Park S, Kim JK, Choi HM et al (2010) Increase in maximal oxygen uptake following 2-week walk training with blood flow occlusion in athletes. Euro J Appl Physiol 109:591–600

    Article  Google Scholar 

  • Patterson SD, Hughes L, Warmington S et al (2019) Blood flow restriction exercise: considerations of methodology, application, and safety. Front Physiol 10:533

    Article  PubMed  PubMed Central  Google Scholar 

  • Pavlou K, Korakakis V, Whiteley R et al (2023) The effects of upper body blood flow restriction training on muscles located proximal to the applied occlusive pressure: A systematic review with meta-analysis. PLoS ONE 18:e0283309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pignanelli C, Christiansen D, Burr JF (2021) Blood flow restriction training and the high-performance athlete: science to application. J Appl Physiol 130:1163–1170

    Article  PubMed  Google Scholar 

  • Pollack KA, Swenson JD, Vanhaitsma TA et al (2014) Exogenously applied muscle metabolites synergistically evoke sensations of muscle fatigue and pain in human subjects. Exp Physiol 99:368–380

    Article  Google Scholar 

  • Renzi CP, Tanaka H, Sugawara J (2010) Effects of leg blood flow restriction during walking on cardiovascular function. Med Sci Sports Exerc 42:726–732

    Article  PubMed  PubMed Central  Google Scholar 

  • Sawka MN (1986) Physiology of upper body exercise. Exerc Sport Sci Rev 14:175–211

    Article  CAS  PubMed  Google Scholar 

  • Scott BR, Loenneke JP, Slattery KM et al (2015) Exercise with blood flow restriction: an updated evidence-based approach for enhanced muscular development. Sports Med 45:313–325

    Article  PubMed  Google Scholar 

  • Silva JCG, Pereira Neto EA, Pfeiffer PA et al (2019) Acute and chronic responses of aerobic exercise with blood flow restriction: a systematic review. Front Physiol 10:1239

    Article  PubMed  PubMed Central  Google Scholar 

  • Singer TJ, Stavres J, Elmer SJ et al (2020) Knee extension with blood flow restriction: impact of cuff pressure on hemodynamics. Eur J Appl Physiol 120:79–90

    Article  PubMed  Google Scholar 

  • Slysz J, Stultz J, Burr JF (2016) The efficacy of blood flow restricted exercise: a systematic review and meta-analysis. J Sci Med Sport 19:669–675

    Article  PubMed  Google Scholar 

  • Spranger MD, Krishnan AC, Levy PD et al (2015) Blood flow restriction training and the exercise pressor reflex: a call for concern. Am J Physiol Heart Circ Physiol 309:H1440–H1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith NDW, Scott BR, Girard O et al (2022) Aerobic training with blood flow restriction for endurance athletes: potential benefits and considerations of implementation. J Strength Cond Res 36:3541–3550

    Article  PubMed  Google Scholar 

  • Stephenson BT, Stone B, Mason BS et al (2021) Physiology of handcycling: a current sports perspective. Scan J Med Sci Sports 31:4–20

    Article  Google Scholar 

  • TafunaI ND, Hunter I, Johnson AW et al (2021) Differences in femoral artery occlusion pressure between sexes and dominant and non-dominant legs. Medicina (kaunas) 57:863

    Article  PubMed  Google Scholar 

  • Thomas HJ, Scott BR, Peiffer JJ (2018) Acute physiological responses to low-intensity blood flow restriction cycling. J Sci Med Sport 21:969–974

    Article  CAS  PubMed  Google Scholar 

  • Willis SJ, Millet GP, Borrani F (2020) Insights for blood flow restriction and hypoxia in leg versus arm submaximal exercise. Int J Sports Physiol Perform 15:714–719

    Article  PubMed  Google Scholar 

  • Yasuda T, Brechue WF, Fujita T et al (2009) Muscle activation during low-intensity muscle contractions with restricted blood flow. J Sports Sci 27:479–489

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the participants for their enthusiastic efforts during the arm cranking trials. The authors also thank Kui Zhang for input with the statistical analysis.

Funding

This work was supported by the Michigan Space Grant Consortium (National Aeronautics and Space Administration Grant no. NNX15AJ20H).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: BAC, ALV, JM, SJE; Methodology: BAC, IJW, ALV, SJE; Formal analysis and investigation: BAC, IJW, ALV, SJE; Writing—original draft preparation: BAC, SJE; Writing—review and editing: BAC, IJW, ALV, JM, SJE; Funding acquisition: BAC, SJE; Supervision: SJE.

Corresponding author

Correspondence to Steven J. Elmer.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by I. Mark Olfert.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cockfield, B.A., Wedig, I.J., Vinckier, A.L. et al. Physiological and perceptual responses to acute arm cranking with blood flow restriction. Eur J Appl Physiol 124, 1509–1521 (2024). https://doi.org/10.1007/s00421-023-05384-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-023-05384-0

Keywords

Navigation