Log in

Vibration and far-field sound radiation of a horizontal, finite-long cylindrical shell partially submerged in fluid

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The vibroacoustic study of a horizontal, finite-long cylindrical shell partially submerged in a fluid is presented in this paper. First, the mathematical and physical model of the system is established using two different coordinate systems for the sound field and the structure. Second, using the Galerkin method to deal with the continuity condition for the velocity on the acoustic–structure coupling surface, the matrix relation of the coefficient vector of the sound field and the displacement field is obtained, followed by the analytical solution of the vibration. The accuracy of this new method is verified through numerical simulations, while its broad applicability and reduced computational cost are demonstrated. Moreover, the method is extended to obtain the far-field sound radiation using the stationary phase method. Altogether, the present work introduces a new thought for solving the vibroacoustic characteristics of a partially coupled system consisting of elastic structures and external fluid fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fuller, C.R., Fahy, F.J.: Characteristics of wave propagation and energy distributions in cylindrical elastic shells filled with fluid. J. Sound Vib. 81, 501–518 (1982). https://doi.org/10.1016/0022-460X(82)90293-0

    Article  Google Scholar 

  2. Zhang, X.M., Liu, G.R., Lam, K.Y.: Coupled vibration analysis of fluid-filled cylindrical shells using the wave propagation approach. Appl. Acoust. 62, 229–243 (2001). https://doi.org/10.1016/S0003-682X(00)00045-1

    Article  Google Scholar 

  3. Zhong Wang, X., Ban Jiang, C., YangXu, R.: Structural and acoustic response of a finite stiffened submarine hull. China Ocean Eng. 30, 898–915 (2016). https://doi.org/10.1007/s13344-016-0058-y

    Article  Google Scholar 

  4. Zhang, X.M.: Frequency analysis of submerged cylindrical shells with the wave propagation approach. Int. J. Mech. Sci. 44, 1259–1273 (2002). https://doi.org/10.1016/S0020-7403(02)00059-0

    Article  MATH  Google Scholar 

  5. Guo, W., Li, T., Zhu, X., Miao, Y., Zhang, G.: Vibration and acoustic radiation of a finite cylindrical shell submerged at finite depth from the free surface. J. Sound Vib. 393, 338–352 (2017). https://doi.org/10.1016/j.jsv.2017.01.003

    Article  Google Scholar 

  6. Guo, W., Li, T., Zhu, X.: Far-field acoustic radiation and vibration of a submerged finite cylindrical shell below the free surface based on energy functional variation principle and stationary phase method. Noise Control Eng. J. 65, 565–576 (2017)

    Article  Google Scholar 

  7. Chen, L., Liang, X., Yi, H.: Vibro-acoustic characteristics of cylindrical shells with complex acoustic boundary conditions. Ocean Eng. 126, 12–21 (2016). https://doi.org/10.1016/j.oceaneng.2016.08.028

    Article  Google Scholar 

  8. Guo, W., Li, T., Zhu, X., Miao, Y.: Sound-structure interaction analysis of an infinite-long cylindrical shell submerged in a quarter water domain and subject to a line-distributed harmonic excitation. J. Sound Vib. 422, 48–61 (2018). https://doi.org/10.1016/j.jsv.2018.02.031

    Article  Google Scholar 

  9. Ergin, A., Temarel, P.: Free vibration of a partially liquid-filled and submerged, horizontal cylindrical shell. J. Sound Vib. 254, 951–965 (2002). https://doi.org/10.1006/jsvi.2001.4139

    Article  Google Scholar 

  10. Brunner, D., Junge, M., Cabos, C., Gaul, L.: Vibroacoustic simulation of partly immersed bodies by a coupled fast BE-FE approach. J. Acoust. Soc. Am. 123, 3418 (2008)

    Article  Google Scholar 

  11. Khojasteh Kashani, B., Aftabi Sani, A.: Free vibration analysis of horizontal cylindrical shells including sloshing effect utilizing polar finite elements. Eur. J. Mech. A/Solids. 58, 187–201 (2016). https://doi.org/10.1016/j.euromechsol.2016.02.002

    Article  MathSciNet  MATH  Google Scholar 

  12. Seybert, A., Wu, T.: Modified Helmholtz integral equation for bodies sitting on an infinite plane. J. Acoust. Soc. Am. 85, 19–23 (1989). https://doi.org/10.1121/1.397716

    Article  Google Scholar 

  13. Yildizdag, M.E., Ardic, I.T., Kefal, A., Ergin, A.: An isogeometric FE-BE method and experimental investigation for the hydroelastic analysis of a horizontal circular cylindrical shell partially filled with fluid. Thin-Walled Struct. 151, 106755 (2020). https://doi.org/10.1016/j.tws.2020.106755

    Article  Google Scholar 

  14. Junge, M., Brunner, D., Becker, J., Gaul, L.: Interface-reduction for the Craig-Bampton and Rubin method applied to FE–BE coupling with a large fluid–structure interface. Int. J. Numer. Methods Eng. 77, 1731–1752 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Seilsepour, H., Zarastvand, M., Talebitooti, R.: Acoustic insulation characteristics of sandwich composite shell systems with double curvature: the effect of nature of viscoelastic core. J. Vib. Control. (2022). https://doi.org/10.1177/10775463211056758

    Article  Google Scholar 

  16. Zarastvand, M.R., Asadijafari, M.H., Talebitooti, R.: Acoustic wave transmission characteristics of stiffened composite shell systems with double curvature. Compos. Struct. 292, 115688 (2022). https://doi.org/10.1016/j.compstruct.2022.115688

    Article  Google Scholar 

  17. Gohari, H.D., Zarastvand, M.R., Talebitooti, R., Loghmani, A., Omidpanah, M.: Radiated sound control from a smart cylinder subjected to piezoelectric uncertainties based on sliding mode technique using self-adjusting boundary layer. Aerosp. Sci. Technol. 106, 106141 (2020). https://doi.org/10.1016/j.ast.2020.106141

    Article  Google Scholar 

  18. Rahmatnezhad, K., Zarastvand, M.R., Talebitooti, R.: Mechanism study and power transmission feature of acoustically stimulated and thermally loaded composite shell structures with double curvature. Compos. Struct. 276, 114557 (2021). https://doi.org/10.1016/j.compstruct.2021.114557

    Article  Google Scholar 

  19. Zarastvand, M.R., Ghassabi, M., Talebitooti, R.: Acoustic insulation characteristics of shell structures: a review. Arch. Comput. Methods Eng. 28, 505–523 (2021). https://doi.org/10.1007/s11831-019-09387-z

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhao, K., Fan, J., Wang, B., Tang, W.: Analytical and experimental study of the vibro-acoustic behavior of a semi-submerged finite cylindrical shell. J. Sound Vib. 482, 115466 (2020). https://doi.org/10.1016/j.jsv.2020.115466

    Article  Google Scholar 

  21. Li, T.Y., Wang, P., Zhu, X., Yang, J., Ye, W.B.: Prediction of far-field sound pressure of a semisubmerged cylindrical shell with low-frequency excitation. J. Vib. Acoust. Trans. ASME. 139, 041002 (2017). https://doi.org/10.1115/1.4036209

    Article  Google Scholar 

  22. Ergin, A.: An approximate method for the free vibration analysis of partially filled and submerged, horizontal cylindrical shells. J. Sound Vib. 207, 761–767 (1997). https://doi.org/10.1006/jsvi.1997.1133

    Article  Google Scholar 

  23. Selmane, A., Lakis, A.A.: Vibration analysis of anisotropic open cylindrical shells subjected to a flowing fluid. J. Fluids Struct. 11, 111–134 (1997). https://doi.org/10.1006/jfls.1996.0069

    Article  MATH  Google Scholar 

  24. Amabili, M.: Free vibration of partially filled, horizontal cylindrical shells. J. Sound Vib. 191, 757–780 (1996). https://doi.org/10.1006/jsvi.1996.0154

    Article  Google Scholar 

  25. Amabili, M.: Flexural vibration of cylindrical shells partially coupled with external and internal fluids. J. Vib. Acoust. Trans. ASME. 119, 476–484 (1997). https://doi.org/10.1115/1.2889748

    Article  Google Scholar 

  26. Santisteban Hidalgo, J.A., Gama, A.L., Moreira, R.M.: Natural vibration frequencies of horizontal tubes partially filled with liquid. J. Sound Vib. 408, 31–42 (2017). https://doi.org/10.1016/j.jsv.2017.07.011

    Article  Google Scholar 

  27. Escaler, X., De La Torre, O., Goggins, J.: Experimental and numerical analysis of directional added mass effects in partially liquid-filled horizontal pipes. J. Fluids Struct. 69, 252–264 (2017). https://doi.org/10.1016/j.jfluidstructs.2017.01.001

    Article  Google Scholar 

  28. Sun, H., Zhang, A., Li, H.: Experimental study and dynamic characteristics analysis of partially liquid-filled annulus tubes. PLoS ONE 13, e0209011 (2018). https://doi.org/10.1371/journal.pone.0209011

    Article  Google Scholar 

  29. Guo, W., Li, T., Zhu, X., Qu, K.: Semi-analytical research on acoustic-structure coupling calculation of partially submerged cylindrical shell. Acta Phys. Sin. 67, 084302 (2018)

    Article  Google Scholar 

  30. Guo, W., Feng, Q., Li, T., Zhu, X., Miao, Y.: A new solution for vibroacoustic analysis of two-dimensional cylindrical shells partially liquid-filled or partially submerged in fluid. Mech. Syst. Signal Process. 140, 106685 (2020). https://doi.org/10.1016/j.ymssp.2020.106685

    Article  Google Scholar 

  31. W., Soedel. Vibrations of shells and plates, Vibrations of shells and plates, 1981.

Download references

Acknowledgements

The authors wish to express their gratitude to the National Natural Science Foundation of China (Contract Nos. 51839005, 51879113), the Youth Science Foundation of Jiangxi province (Contract No. 20202BABL214049), and the Youth Science Foundation of Jiangxi Provincial Education Department (Contract No. GJJ190339). All data included in this study are available upon request by contact with the corresponding author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueyang Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, W., Hong, X., Han, Y. et al. Vibration and far-field sound radiation of a horizontal, finite-long cylindrical shell partially submerged in fluid. Arch Appl Mech 93, 1491–1505 (2023). https://doi.org/10.1007/s00419-022-02341-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02341-9

Keywords

Navigation