Log in

Anti-plane problem of a nano-sharp crack in one-dimensional hexagonal piezoelectric quasicrystals with the electrically semi-permeable condition

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Based on the Gurtin–Murdoch surface/interface theory and the complex potential theory, the problem of an electrically semi-permeable nano-sharp crack in one-dimensional (1D) hexagonal piezoelectric quasicrystals is analyzed. By constructing conformal map** of the sharp crack, the analytic solutions of the electroelastic field are determined. Meanwhile, the field intensity factors and the energy release rate (ERR) under the electric boundary conditions of semi-permeable are obtained. Numerical examples are given to analyze the effects of the crack size, dielectric constant, electric loading, and mechanic loadings on the dimensionless field intensity factors and the dimensionless ERR. The results show that the impact of the surface effect becomes weaker along with the growth of the crack length, but increases with the increase in the crack angle. The change of the dielectric coefficient has little influence on the dimensionless stress intensity factors (SIFs), but has a strong influence on the dimensionless electric displacement intensity factor (EDIF). The obtained results are helpful to promote the development of nano-quasicrystal composite mechanics and provide an important theoretical support for the design and application of nano-QC materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jaric, M.V.: Introduction to the mathematics of quasicrystals. Academic, New York (1989)

    MATH  Google Scholar 

  2. Goldman, A.: Quasicrystal structure and properties. Annu. Rev. Phys. Chem. 42(1), 685–729 (1991)

    Article  Google Scholar 

  3. Eline, H.S.: Microstructure, fabrication and properties of quasicrystalline Al-Cu-Fe alloys: a review. J. Alloy. Compd. 363(1-2), 150–174 (2004)

    Google Scholar 

  4. Sanchez, A., de Blas, F.J.G., Algaba, J.M., et al.: Application of quasicrystalline materials as thermal barriers in aeronautics and future perspectives of use for these materials. Mater. Res. Soc. Symp. Proc. 553, 447–458 (1999)

    Article  Google Scholar 

  5. Guo, X.P., Chen, J.F., Yu, H.L., et al.: A study on the microstructure and tribological behavior of cold-sprayed metal matrix composites reinforced by particulate quasicrystal. Surf. Coat. Technol. 268, 94–98 (2015)

    Article  Google Scholar 

  6. Song, X.F., Hao, J.M., Han, L.M., et al.: Research progress of quasicrystal application in catalysis, reinforced composites and hydrogen storage. Chem. Ind. Eng. Progr. 34(4), 1037–1042 (2015). (In Chinese)

    Google Scholar 

  7. Mompiou, F., Caillard, D.: Dislocations and mechanical properties of icosahedral quasicrystals. C R Phys. 15(1), 82–89 (2014)

    Article  Google Scholar 

  8. Fujiwara, T., Laissardière, G.T.D., Yamamoto, S.: Electronic structure and electron transport in quasicrystals. Mater. Sci. Forum 150–151, 387–394 (1994)

    Article  Google Scholar 

  9. Hu, C.Z., Wang, R.H., Ding, D.H., et al.: Piezoelectric effects in quasicrystals. Phys. Rev. B 56(5), 2463–2468 (1997)

    Article  Google Scholar 

  10. Mizutani, U.: Introduction to the electron theory of metals: electronic structure and electron transport properties of liquid metals, amorphous metals and quasicrystals. Cambridge University Press, Oxford City (2001)

    Book  Google Scholar 

  11. Fan, C.Y., Li, Y., Xu, G.T., et al.: Fundamental solutions and analysis of three-dimensional cracks in one-dimensional hexagonal piezoelectric quasicrystals. Mech. Res. Commun. 74, 39–44 (2016)

    Article  Google Scholar 

  12. Cheng, J.X., Liu, B.J., Huang, X.Z., et al.: Anti-plane fracture analysis of 1D hexagonal piezoelectric quasicrystals with the effects of damage due to materials degradation. Theor. Appl. Fract. Mech. 113, 102939 (2021)

    Article  Google Scholar 

  13. Cheng, J.X., Liu, B.J., Cao, X.L., et al.: Applications of the Trefftz method to the anti-plane fracture of 1D hexagonal piezoelectric quasicrystals. Eng. Anal. Bound. Elem. 131(11–12), 194–205 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yang, J., Li, X.: Analytic solutions of problem about a circular hole with a straight crack in one-dimensional hexagonal quasicrystals with piezoelectric effects. Theor. Appl. Fract. Mech. 82, 17–24 (2016)

    Article  Google Scholar 

  15. Fan, S.W., Guo, J.H.: Anti-plane problem of an edge crack emanating from a triangle hole in one-dimensional hexagonal piezoelectric quasicrystals. Chin. J. Appl. Mech. 33(03), 421–426 (2016)

    Google Scholar 

  16. Hu, K.Q., **, H., Yang, Z.J., et al.: Interface crack between dissimilar one-dimensional hexagonal quasicrystals with piezoelectric effect. Acta Mech. 230(7), 2455–2474 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Loboda, V., Komarov, O., Bilyi, D., et al.: An analytical approach to the analysis of an electrically permeable interface crack in a 1D piezoelectric quasicrystal. Acta Mech. 231(8), 3419–3433 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhou, Y.B., Li, X.F.: Two collinear mode-III cracks in one-dimensional hexagonal piezoelectric quasicrystal strip. Eng. Fract. Mech. 189, 133–147 (2018)

    Article  Google Scholar 

  19. Hu, K.Q., Gao, C.F., Zhong, Z., et al.: Interaction of collinear interface cracks between dissimilar one-dimensional hexagonal piezoelectric quasicrystals. ZAMM Z. Angew. Math. Mech. 101(11), 1–26 (2021)

    Article  MathSciNet  Google Scholar 

  20. Zhang, T.Y., Zhao, M.H., Tong, P.: Fracture of piezoelectric ceramics. Adv. Appl. Mech. 38(02), 147–289 (2002)

    Article  Google Scholar 

  21. Zhou, Y.B., Liu, G.T., Li, L.H.: Effect of T-stress on the fracture in an infinite one-dimensional hexagonal piezoelectric quasicrystal with a Griffith crack. Eur. J. Mech. A Solids 86(11), 104184 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yang, J., Zhou, Y.T., Ma, H.L., et al.: The fracture behavior of two asymmetrical limited permeable cracks emanating from an elliptical hole in one-dimensional hexagonal quasicrystals with piezoelectric effect. Int. J. Solids Struct. 108, 175–185 (2017)

    Article  Google Scholar 

  23. Ali, F., Anwar, M.S., Saldino, S., et, al.: Al-based metal matrix composites reinforced with Al-Cu-Fe quasicrystalline particles: strengthening by interfacial reaction. J. Alloys Compd. 607, 274–279 (2014)

    Article  Google Scholar 

  24. Zhang, J.S., Pei, L.X., Du, H.W., et al.: Effect of Mg-based spherical quasicrystals on microstructure and mechanical properties of AZ91 alloys. J. Alloy. Compd. 453(1–2), 309–315 (2008)

    Article  Google Scholar 

  25. Yang, D.S., Liu, G.T.: Anti-plane problem of three nano cracks emanating from an electrically permeable hexagonal nanohole in one-dimensional hexagonal piezoelectric quasicrystals. Math. Probl. Eng. 2020, 1372474 (2020)

    Article  Google Scholar 

  26. Yang, D.S., Liu, G.T.: Anti-plane problem of nano-cracks emanating from a regular hexagonal nano-hole in one-dimensional hexagonal piezoelectric quasicrystals. Chin. Phys. B 29(10), 104601 (2020)

    Article  Google Scholar 

  27. Zhao, Z.N., Guo, J.H.: Surface effects on a mode-III reinforced nano-elliptical hole embedded in one-dimensional hexagonal piezoelectric quasicrystals. Appl. Math. Mech. 42(5), 625–640 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Su, M.Y., **ao, J.H., Feng, G.Y., et al.: Mode-III fracture of a nanoscale cracked hole in one-dimensional hexagonal piezoelectric quasicrystals. Int. J. Mech. Mater. Des. (2022). https://doi.org/10.1007/s10999-022-09589-7

    Article  Google Scholar 

  29. Wu, Z.L., Liu, G.T., Yang, D.S.: Surface effect on two nano cracks emanating from an electrically semi-permeable regular 2n-polygon nanohole in one-dimensional hexagonal piezoelectric quasicrystals under anti-plane shear. Int. J. Mod. Phys. B 35(32), 2150330 (2021)

    Article  Google Scholar 

  30. Gan, Y., Chu, W., Qiao, L.: Imaging atomically sharp crack tips in mica by contact mode AFM under ambient conditions. Eur. Phys. J. Appl. Phys. 31, 37–44 (2005)

    Article  Google Scholar 

  31. Song, H.P., Fang, Q.H., Liu, Y.W.: Elastic behaviour of a wedge disclination dipole near a sharp crack emanating from a semi-elliptical blunt crack. Chin. Phys. B 19(5), 056102 (2010)

    Article  Google Scholar 

  32. Fang, X.M., Charalambides, P.G.: The fracture mechanics of cantilever beams with an embedded sharp crack under end force loading. Eng. Fract. Mech. 149, 1–17 (2015)

    Article  Google Scholar 

  33. Li, C., Tie, Y., Zhao, H.D.: Study on stress field around shape crack of finite-width plank in bending moment. Eng. Mech. 29(5), 26–30 (2012) (In Chinese)

    Google Scholar 

  34. Su, M.Y., **ao, J.H., Feng, G.Y.: Type III fracture mechanics of a nanoscale cracked hole in one-dimensional hexagonal quasicrystals. Chin. J. Solid Mech. 41(3), 281–292 (2020)

    Google Scholar 

  35. Wang, G.F., Feng, X.Q., Wang, T.J., et al.: Surface effects on the near-tip stresses for mode-I and mode-III cracks. J. Appl. Mech. 75(1), 011001 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (12262033, 12062021, 12062022, 12272269 and 11972257), Ningxia Hui Autonomous Region Science and Technology Innovation Leading Talent Training Project (KJT2020001), and the Natural Science Foundation of Ningxia (2022AAC03013; 2022AAC03068).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuefen Zhao or Shenghu Ding.

Ethics declarations

Conflict of interest

ON behalf all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Zhao, X., Zhou, Y. et al. Anti-plane problem of a nano-sharp crack in one-dimensional hexagonal piezoelectric quasicrystals with the electrically semi-permeable condition. Arch Appl Mech 93, 1423–1435 (2023). https://doi.org/10.1007/s00419-022-02336-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02336-6

Keywords

Navigation