Log in

Reliability-based design optimization under mixture of random, interval and convex uncertainties

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In view of the significant influences of multi-source uncertainties on structural safety, which generally exist in practical engineering (such as the dispersion of material, the uncertainty of external load and the error of processing technology), more academic research and engineering applications had paid attention to uncertainty in recent years. However, due to the complexity of the structural problems, there may be multiple uncertain parameters. Traditional methods of optimal design by single-source uncertainty model, particularly the one derived from probability theory, may no longer be feasible. This paper investigates a new formulation and numerical solution of reliability-based design optimization (RBDO) of structures exhibiting random and uncertain-but-bounded (interval and convex) mixed uncertainties. Combined with the non-probabilistic set-theory convex model and the classical probabilistic approach, the mathematical definition of hybrid reliability is firstly presented for a quantified measure of the safety margin. The reliability-based optimization incorporating such mixed reliability constraints is then formulated. The PSO algorithm is employed to improve the convergence and the stability in seeking the optimal global solution. Additionally, by introducing the general concept of the safety factor, the compatibility between the proposed hybrid RBDO technique and the safety factor-based model is further discussed. By virtue of the above two methods, two numerical examples of typical components (the cantilever structure and the truss structure) as well as one complex engineering example (the hypersonic wing structure) are performed, subjected to the strength or stiffness criteria. The accuracy and effectiveness of the present method are then demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Elishakoff, I.: Probabilistic Theory of Structures. Courier Dover Publications, Mineola (1999)

    MATH  Google Scholar 

  2. Ditlevsen, O., Madsen, H.O.: Structural Reliability Methods. Citeseer, Princeton (1996)

    Google Scholar 

  3. Madsen, H.O., Krenk, S., Lind, N.C.: Methods of structural safety. DoverPublications.com (2006)

  4. Lemaire, M.: Structural Reliability. Wiley, London (2009)

    Book  Google Scholar 

  5. Kleiber, M., Tran, D.H.: The Stochastic Finite Element Method: Basic Perturbation Technique and Computer Implementation. Wiley, New York (1992)

    MATH  Google Scholar 

  6. Qin, Q., Lin, D.J., Mei, G.: Theory and Applications: Reliability Stochastic Finite Element Methods. Tsinghua University Press, Bei**g (2006)

    Google Scholar 

  7. Hasofer, A.M., Lind, N.C.: An exact and invariant first order reliability format. J. Eng. Mech. 100, 111–120 (1974)

    Google Scholar 

  8. Hohenbichler, M., Rackwitz, R.: Improvement of second-order reliability estimates by importance sampling. J. Eng. Mech. 114, 2195–2199 (1988)

    Article  Google Scholar 

  9. Breitung, K.: Asymptotic approximations for probability integrals. Probab. Eng. Mech. 4, 187–190 (1989)

    Article  Google Scholar 

  10. Polidori, D.C., Beck, J.L., Papadimitriou, C.: New approximations for reliability integrals. J. Eng. Mech. 125, 466–475 (1999)

    Article  Google Scholar 

  11. Balu, A.S., Rao, B.N.: Inverse structural reliability analysis under mixed uncertainties using high dimensional model representation and fast Fourier transform. Eng. Struct. 37, 224–234 (2012)

    Article  Google Scholar 

  12. Elishakoff, I.: Discussion on the paper: a non-probabilistic concept of reliability. Struct. Saf. 17, 195–199 (1995)

    Article  Google Scholar 

  13. Ben-Haim, Y.: Robust reliability of structures. Adv. Appl. Mech. 33, 1–41 (1997)

    Article  MATH  Google Scholar 

  14. Qiu, Z.P., Mueller, P.C., Frommer, A.: The new nonprobabilistic criterion of failure for dynamical systems based on convex models. Math. Comput. Model. 40, 201–215 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jiang, T., Chen, J.J., Xu, Y.L.: A semi-analytic method for calculating non-probabilistic reliability index based on interval models. Appl. Math. Model. 31, 1362–1370 (2007)

    Article  MATH  Google Scholar 

  16. Chen, X.Y., Tang, C.Y., Tsui, C.P., Fan, J.P.: Modified scheme based on semi-analytic approach for computing non-probabilistic reliability index. Acta Mech. Solid. Sin. 23, 115–123 (2010)

    Article  Google Scholar 

  17. Jiang, C., Han, X., Lu, G.Y., Liu, J., Zhang, Z., Bai, Y.C.: Correlation analysis of non-probabilistic convex model and corresponding structural reliability technique. Comput. Methods Appl. Mech. Eng. 200, 2528–2546 (2011)

    Article  MATH  Google Scholar 

  18. Jiang, C., Bi, R.G., Lu, G.Y., Han, X.: Structural reliability analysis using non-probabilistic convex model. Comput. Methods Appl. Mech. Eng. 254, 83–98 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Moens, D., Vandepitte, D.: Recent advances in non-probabilistic approaches for non-deterministic dynamic finite element analysis. Arch. Comput. Methods Eng. 13, 389–464 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Möller, B., Beer, M.: Engineering computation under uncertainty—capabilities of non-traditional models. Comput. Struct. 86, 1024–1041 (2008)

    Article  Google Scholar 

  21. Elishakoff, I., Ohsaki, M.: Optimization and Anti-Optimization of Structures Under Uncertainty. Imperial College Press, London (2010)

    Book  MATH  Google Scholar 

  22. Guo, S.X., Lu, Z.Z.: Hybrid probabilistic and non-probabilistic model of structural reliability. J. Eng. Mech. 24, 524–526 (2002)

    Google Scholar 

  23. Du, X.P., Sudjianto, A., Huang, B.Q.: Reliability-based design with the mixture of random and interval variables. J. Mech. Design 2005, 127 (1068)

    Google Scholar 

  24. Luo, Y.J., Kang, Z., Li, A.: Structural reliability assessment based on probability and convex set mixed model. Comput. Struct. 87, 1408–1415 (2009)

    Article  Google Scholar 

  25. Jiang, C., Li, W.X., Han, X., Liu, L.X., Le, P.H.: Structural reliability analysis based on random distributions with interval parameters. Comput. Struct. 89, 2292–2302 (2011)

    Article  Google Scholar 

  26. Jiang, C., Lu, G.Y., Han, X., Liu, L.X.: A new reliability analysis method for uncertain structures with random and interval variables. Int. J. Mech. Mater. Design 8, 169–182 (2012)

    Article  Google Scholar 

  27. Elishakoff, I., Colombi, P.: Combination of probabilistic and convex models of uncertainty when scarce knowledge is present on acoustic excitation parameters. Comput. Methods Appl. Mech. Eng. 104, 187–209 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Penmetsa, R.C., Grandhi, R.V.: Efficient estimation of structural reliability for problems with uncertain intervals. Comput. Struct. 80, 1103–1112 (2002)

    Article  Google Scholar 

  29. Hall, J.W., Lawry, J.: Generation, combination and extension of random set approximations to coherent lower and upper probabilities. Reliab. Eng. Syst. Saf. 85, 89–101 (2004)

    Article  Google Scholar 

  30. Qiu, Z.P., Wang, J.: The interval estimation of reliability for probabilistic and non-probabilistic hybrid structural system. Eng. Fail. Anal. 17, 1142–1154 (2010)

    Article  Google Scholar 

  31. Beck, A.T., Gomes, W.J.S.: A comparison of deterministic, reliability-based and risk-based structural optimization under uncertainty. Probab. Eng. Mech. 28, 18–29 (2012)

    Article  Google Scholar 

  32. Nikolaidis, E., Burdisso, R.: Reliability based optimization: a safety index approach. Comput. Struct. 28, 781–788 (1988)

    Article  MATH  Google Scholar 

  33. Tu, J., Choi, K.K., Park, Y.H.: A new study on reliability-based design optimization. J. Mech. Design 121, 557–564 (1999)

    Article  Google Scholar 

  34. Aoues, Y., Chateauneuf, A.: Benchmark study of numerical methods for reliability-based design optimization. Struct. Multidiscip. Optim. 41, 277–294 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Byeong, H.J., Byung, C.L.: Reliability-based design optimization using a moment method and a kriging metamodel. Eng. Optim. 40, 421–438 (2008)

    Article  MathSciNet  Google Scholar 

  36. Chen, Z.Z., Qiu, H.B., Gao, L., Su, L., Li, P.G.: An adaptive decoupling approach for reliability-based design optimization. Comput. Struct. 117, 58–66 (2013)

    Article  Google Scholar 

  37. Elishakoff, I., Haftka, R.T., Fang, J.: Structural design under bounded uncertainty optimization with anti-optimization. Comput. Struct. 53, 1401–1405 (1994)

    Article  MATH  Google Scholar 

  38. Qiu, Z.P., Elishakoff, I.: Antioptimization of structures with large uncertain-but-non-random parameters via interval analysis. Comput. Methods Appl. Mech. Eng. 152, 361–372 (1998)

    Article  MATH  Google Scholar 

  39. Lombardi, M., Haftka, R.T.: Anti-optimization technique for structural design under load uncertainties. Comput. Methods Appl. Mech. Eng. 157, 19–31 (1998)

    Article  MATH  Google Scholar 

  40. Pantelides, C.P., Ganzerli, S.: Design of trusses under uncertain loads using convex models. J. Struct. Eng. 124, 318–329 (1998)

    Article  Google Scholar 

  41. Jiang, C., Han, X., Liu, G.R.: Optimization of structures with uncertain constraints based on convex model and satisfaction degree of interval. Comput. Methods Appl. Mech. Eng. 196, 4791–4800 (2007)

    Article  MATH  Google Scholar 

  42. Luo, Y., Kang, Z., Luo, Z., Li, A.: Continuum topology optimization with non-probabilistic reliability constraints based on multi-ellipsoid convex model. Struct. Multidiscip. Optim. 39, 297–310 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kang, Z., Luo, Y.J., Li, A.: On non-probabilistic reliability-based design optimization of structures with uncertain-but-bounded parameters. Struct. Saf. 33, 196–205 (2011)

    Article  Google Scholar 

  44. Ge, R., Chen, J.Q., Wei, J.H.: Reliability-based design of composites under the mixed uncertainties and the optimization algorithm. Acta Mech. Solid. Sin. 21, 19–27 (2008)

    Article  Google Scholar 

  45. Luo, Y., Li, A., Kang, Z.: Reliability-based design optimization of adhesive bonded steel-concrete composite beams with probabilistic and non-probabilistic uncertainties. Eng. Struct. 33, 2110–2119 (2011)

    Article  Google Scholar 

  46. Yao, W., Chen, X.Q., Huang, Y.Y., Gurdal, Z., Michel, V.T.: Sequential optimization and mixed uncertainties analysis method for reliability-based optimization. AIAA J. 51, 2266–2277 (2013)

    Article  Google Scholar 

  47. Wang, X., Qiu, Z., Elishakoff, I.: Non-probabilistic set-theoretic model for structural safety measure. Acta Mech. 198, 51–64 (2008)

    Article  MATH  Google Scholar 

  48. Wang, X., Wang, L., Elishakoff, I., Qiu, Z.: Probability and convexity concepts are not antagonistic. Acta Mech. 219, 45–64 (2011)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Nature Science Foundation of China (Nos. 11372025, 11572024, 11432002) and the Defense Industrial Technology Development Program (Nos. JCKY2013601B, JCKY2016601B) for the financial supports. Besides, the authors wish to express their many thanks to the reviewers for their useful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aojun Wang.

Appendix

Appendix

Case (a): As is shown in Fig. 5a, when \(Y_1 \) is assigned to the maximum \(\overline{Y_1 } \) or minimum \(\underline{Y_1 }\), there is no intersection between the limit-state and the feasible domain, and the distance from the origin to the failure surface would be greater than unity. Hence, we have

$$\begin{aligned} \frac{M_Z +f({\varvec{x}})-b_1 \underline{Y_1 }}{\sqrt{(c_1 Z_1^r )^{2}+(c_2 Z_2^r )^{2}}}\ge \frac{M_Z +f({\varvec{x}})-b_1 \overline{Y_1 } }{\sqrt{(c_1 Z_1^r )^{2}+(c_2 Z_2^r )^{2}}}=\frac{M_Z +f({\varvec{x}})-b_1 \overline{Y_1 } }{N_Z }=D_1 ({\varvec{x}},\overline{Y_1 } )\ge 1 \end{aligned}$$
(37)

Then, the span of \(f({\varvec{x}})\) is

$$\begin{aligned} f({\varvec{x}})\in \left[ {\left. {N_Z +b_1 \overline{Y_1 } -M_Z, +\infty } \right) } \right. \end{aligned}$$
(38)

Obviously, once the given \({\varvec{x}}\) satisfies (38), it is definitely safe with a reliability index \(\eta \left( {{\varvec{d}},{\varvec{x}}} \right) =1\).

Case (b): As is shown in Fig. 5b, when \(Y_1 =\underline{Y_1 }\), there is no intersection between the limit-state and the feasible domain of uncertain variables; when \(Y_1 =\overline{Y_1 } \), the interference occurs, and the distance \(D_1 ({\varvec{x}},\overline{Y_1 } )\) would be within an interval \([0,\;1]\), namely

$$\begin{aligned} D_1 ({\varvec{x}},\underline{Y_1 })\frac{M_Z +f({\varvec{x}})-b_1 \underline{Y_1 }}{N_Z }\ge 1, \quad \text {and }\;0\le D_1 ({\varvec{x}},\overline{Y_1 } )=\frac{M_Z +f({\varvec{x}})-b_1 \overline{Y_1 } }{N_Z }\le 1 \end{aligned}$$
(39)

It is apparent that

$$\begin{aligned} f({\varvec{x}})\in \left[ {\max (N_Z +b_1 \underline{Y_1 }-M_Z, b_1 \overline{Y_1 } -M_Z ), N_Z +b_1 \overline{Y_1 } -M_Z } \right] \end{aligned}$$
(40)

In this case, the reliability index \(\eta \left( {{\varvec{d}},{\varvec{x}}} \right) \) is defined as the volume ratio between the transparent region and the total region. So, it reads

$$\begin{aligned} \eta \left( {{\varvec{d}},{\varvec{x}}} \right) =\frac{V_\mathrm{safe} }{V_\mathrm{total} }=1-\frac{V_\mathrm{failure} }{V_\mathrm{total} } \end{aligned}$$
(41)

where \(V_\mathrm{total} =(\overline{Y_1 } -\underline{Y_1 })\pi \). By virtue of the integral operation, \(V_\mathrm{failure} \) can be expressed as

$$\begin{aligned} V_\mathrm{failure} ={\int }_{Y_1^\alpha }^{\overline{Y_1 } } {S_1 ({\varvec{x}},Y_1 )} \mathrm{d}Y_1 \end{aligned}$$
(42)

where \(S_1 ({\varvec{x}},Y_1 )\) stands for the area of the bow-shaped interference region which implies failure (its analytical expression has been deduced by our previous work in Ref. [48]); \(Y_1^\alpha \) denotes the value of \(Y_1 \) when it satisfies \(D_1 ({\varvec{x}},Y_1 )=1\), i.e.,

$$\begin{aligned} \frac{M_Z +f({\varvec{x}})-b_1 Y_1^\alpha }{N_Z}=1\Rightarrow Y_1^\alpha =\frac{f({\varvec{x}})-N_Z +M_Z }{b_1} \end{aligned}$$
(43)

Therefore, \(\eta \left( {{\varvec{d}},{\varvec{x}}} \right) \) can be expanded as

$$\begin{aligned} \eta \left( {{\varvec{d}},{\varvec{x}}} \right) =1-\frac{V_\mathrm{failure} }{V_\mathrm{total} }=1-\frac{{\int }_{\frac{f({\varvec{x}})-N_Z +M_Z }{b_1 }}^{\overline{Y_1 } } {S_1 ({\varvec{x}},Y_1 )} \mathrm{d}Y_1 }{(\overline{Y_1 } -\underline{Y_1 })\pi } \end{aligned}$$
(44)

Case (c): As is shown in Fig. 5c, differ from case (b), the distance from the origin to the failure surface is \(D_2 ({\varvec{x}},\overline{Y_1 } )\in \left[ {0,\;1} \right] \) when \(Y_1 =\overline{Y_1 } \). Hence, \(V_\mathrm{failure} \) can be represented as

$$\begin{aligned} V_\mathrm{failure} ={\int }_{Y_1^\alpha }^{Y_1^\beta } {S_1 ({\varvec{x}},Y_1 )} \mathrm{d}Y_1 +{\int }_{Y_1^\beta }^{\overline{Y_1 } } {\left( {\pi -S_2 ({\varvec{x}},Y_1 )} \right) } \mathrm{d}Y_1 \end{aligned}$$
(45)

where \(Y_1^\beta \) denotes the value of \(Y_1 \) when it satisfies \(D_2 ({\varvec{x}},Y_1 )=0\), i.e.,

$$\begin{aligned} -\frac{M_Z +f({\varvec{x}})-b_1 Y_1^\beta }{N_Z }=0\Rightarrow Y_1^\beta =\frac{f({\varvec{x}})+M_Z }{b_1 } \end{aligned}$$
(46)

Substituting (45), (46) into (41), we obtain

$$\begin{aligned} \eta \left( {{\varvec{d}},{\varvec{x}}} \right)= & {} 1-\frac{V_\mathrm{failure} }{V_\mathrm{total} }=1-\frac{{\int }_{\frac{f({\varvec{x}})-N_Z +M_Z }{b_1 }}^{\frac{f({\varvec{x}})+M_Z }{b_1 }} {S_1 ({\varvec{x}},Y_1 )} \mathrm{d}Y_1 +{\int }_{\frac{f({\varvec{x}})+M_Z }{b_1 }}^{\overline{Y_1 } } {\left( {\pi -S_2 ({\varvec{x}},Y_1 )} \right) } \mathrm{d}Y_1 }{(\overline{Y_1 } -\underline{Y_1 })\pi } \nonumber \\= & {} 1-\frac{\left( {\overline{Y_1 } -\frac{f({\varvec{x}})+M_Z }{b_1 }} \right) \pi }{(\overline{Y_1 } -\underline{Y_1 })\pi }-\frac{{\int }_{\frac{f({\varvec{x}})-N_Z +M_Z }{b_1 }}^{\frac{f({\varvec{x}})+M_Z }{b_1 }} {S_1 ({\varvec{x}},Y_1 )} \mathrm{d}Y_1 }{(\overline{Y_1 } -\underline{Y_1 })\pi }+\frac{{\int }_{\frac{f({\varvec{x}})+M_Z }{b_1 }}^{\overline{Y_1 } } {S_2 ({\varvec{x}},Y_1 )} \mathrm{d}Y_1 }{(\overline{Y_1 } -\underline{Y_1 })\pi } \nonumber \\= & {} \frac{f({\varvec{x}})-b_1 \overline{Y_1 } +M_Z }{(\overline{Y_1 } -\underline{Y_1 })b_1 }-\frac{{\int }_{\frac{f({\varvec{x}})-N_Z +M_Z }{b_1 }}^{\frac{f({\varvec{x}})+M_Z }{b_1 }} {S_1 ({\varvec{x}},Y_1 )} \mathrm{d}Y_1 }{(\overline{Y_1 } -\underline{Y_1 })\pi }+\frac{{\int }_{\frac{f({\varvec{x}})+M_Z }{b_1 }}^{\overline{Y_1 } } {S_2 ({\varvec{x}},Y_1 )} \mathrm{d}Y_1 }{(\overline{Y_1 } -\underline{Y_1 })\pi } \end{aligned}$$
(47)

Case (d): As is shown in Fig. 5d, similar to the cases discussed before, but the distance \(D_2 ({\varvec{x}},\overline{Y_1})\) greater than unity, the expression of \(V_\mathrm{failure}\) is changed as

$$\begin{aligned} V_\mathrm{failure} ={\int }_{Y_1^\alpha }^{Y_1^\beta } {S_1 ({\varvec{x}},Y_1 )} dY_1 +{\int }_{Y_1^\beta }^{Y_1^\gamma } {\left( {\pi -S_2 ({\varvec{x}},Y_1 )} \right) } dY_1 +\left( {\overline{Y_1 } -Y_1^\gamma } \right) \pi \end{aligned}$$
(48)

where \(Y_1^\gamma \) denotes the value of \(Y_1 \) when it satisfies \(D_2 ({\varvec{x}},Y_1 )=1\), i.e.,

$$\begin{aligned} -\frac{M_Z +f({\varvec{x}})-b_1 Y_1^\gamma }{N_Z }=1\Rightarrow Y_1^\gamma =\frac{f({\varvec{x}})+N_Z +M_Z }{b_1 } \end{aligned}$$
(49)

Substituting (48), (49) into (41), we obtain

$$\begin{aligned} \eta \left( {{\varvec{d}},{\varvec{x}}} \right)= & {} 1-\frac{V_\mathrm{failure} }{V_\mathrm{total} }\nonumber \\= & {} 1-\frac{{\int }_{\frac{f({\varvec{x}})-N_Z +M_Z }{b_1 }}^{\frac{f({\varvec{x}})+M_Z }{b_1 }} {S_1 ({\varvec{x}},Y_1 )} \mathrm{d}Y_1 +{\int }_{\frac{f({\varvec{x}})+M_Z }{b_1 }}^{\frac{f({\varvec{x}})+N_Z +M_Z }{b_1 }} {\left( {\pi -S_2 ({\varvec{x}},Y_1 )} \right) } \mathrm{d}Y_1 +\left( {\overline{Y_1 } -\frac{f({\varvec{x}})+N_Z +M_Z }{b_1 }} \right) \pi }{(\overline{Y_1 } -\underline{Y_1 })\pi } \nonumber \\= & {} 1-\frac{\left( {\frac{f({\varvec{x}})+N_Z +M_Z }{b_1 }-\frac{f({\varvec{x}})+M_Z }{b_1 }} \right) \pi }{(\overline{Y_1 } -\underline{Y_1 })\pi }-\frac{\left( {\overline{Y_1 } -\frac{f({\varvec{x}})+N_Z +M_Z }{b_1 }} \right) \pi }{(\overline{Y_1 } -\underline{Y_1 })\pi } \nonumber \\&\quad -\frac{{\int }_{\frac{f({\varvec{x}})-N_Z +M_Z }{b_1 }}^{\frac{f({\varvec{x}})+M_Z }{b_1 }} {S_1 ({\varvec{x}},Y_1 )} \mathrm{d}Y_1 }{(\overline{Y_1 } -\underline{Y_1 })\pi }+\frac{{\int }_{\frac{f({\varvec{x}})+M_Z }{b_1 }}^{\frac{f({\varvec{x}})+N_Z +M_Z }{b_1 }} {S_2 ({\varvec{x}},Y_1 )} \mathrm{d}Y_1 }{(\overline{Y_1 } -\underline{Y_1 })\pi } \nonumber \\= & {} \frac{f({\varvec{x}})-b_1 \underline{Y_1 }+M_Z }{(\overline{Y_1 } -\underline{Y_1 })b_1 }-\frac{{\int }_{\frac{f({\varvec{x}})-N_Z +M_Z }{b_1 }}^{\frac{f({\varvec{x}})+M_Z }{b_1 }} {S_1 ({\varvec{x}},Y_1 )} \mathrm{d}Y_1 }{(\overline{Y_1 } -\underline{Y_1 })\pi }+\frac{{\int }_{\frac{f({\varvec{x}})+M_Z }{b_1 }}^{\frac{f({\varvec{x}})+N_Z +M_Z }{b_1 }} {S_2 ({\varvec{x}},Y_1 )} \mathrm{d}Y_1 }{(\overline{Y_1 } -\underline{Y_1 })\pi } \end{aligned}$$
(50)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Wang, X., Wang, R. et al. Reliability-based design optimization under mixture of random, interval and convex uncertainties. Arch Appl Mech 86, 1341–1367 (2016). https://doi.org/10.1007/s00419-016-1121-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-016-1121-0

Keywords

Navigation