Log in

Dynamic chromosome association with nuclear organelles in living cells

  • Brief Report
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The development of progressively sophisticated tools complemented by the integration of live cell imaging enhances our understanding of the four-dimensional (4D) nucleome, revealing elaborate molecular interactions and chromatin states. Yet, the dynamics of chromosomes in relation to nuclear organelles or to each other across cell cycle in living cells are underexplored. We have developed photoconvertible GFP H3-Dendra2 stably expressing in PC3M cells. The nuclear lamina and perinucleolar associated heterochromatin or diffuse chromosome regions were photoconverted through a single-point activation using a confocal microscope. The results demonstrated a dynamic nature for both types of chromosomes in the same cell cycle and across mitosis. While some chromosome domains were heritably associated with either nuclear lamina or nucleoli, others changed alliance to different nuclear organelles postmitotically. In addition, co-photoconverted chromosome domains often do not stay together within the same cell cycle and across mitosis, suggesting a transient nature of chromosome neighborhoods. Long-range spreading and movement of chromosomes were also observed. Interestingly, when cells were treated with a low concentration of actinomycin D that inhibits Pol I transcription through intercalating GC-rich DNA, chromosome movement was significantly blocked. Treatment with another Pol I inhibitor, metarrestin, which does not impact DNA, had little effect on the movement, suggesting that the DNA structure itself plays a role in chromosome dynamics. Furthermore, inhibition of Pol II transcription with α-amanitin also reduced the chromosome movement, demonstrating that Pol II, but not Pol I transcription, is important for chromosome dynamics in the nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  • Ahmad K, Henikoff S (2002) The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 9:1191–1200

    Article  CAS  PubMed  Google Scholar 

  • Bartolomei MS, Corden JL (1987) Localization of an alpha-amanitin resistance mutation in the gene encoding the largest subunit of mouse RNA polymerase II. Mol Cell Biol 7:586–594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Belmont AS (2001) Visualizing chromosome dynamics with GFP. Trends Cell Biol 11:250–257

    Article  CAS  PubMed  Google Scholar 

  • Belmont AS, Straight AF (1998) In vivo visualization of chromosomes using lac operator-repressor binding. Trends Cell Biol 8:121–124

    Article  CAS  PubMed  Google Scholar 

  • Bystricky K (2015) Chromosome dynamics and folding in eukaryotes: insights from live cell microscopy. FEBS Lett 589:3014–3022

    Article  CAS  PubMed  Google Scholar 

  • Carpenter AE, Belmont AS (2004) Direct visualization of transcription factor-induced chromatin remodeling and cofactor recruitment in vivo. Methods Enzymol 375:366–381

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Belmont AS, Huang S (2004) Upstream binding factor association induces large-scale chromatin decondensation. Proc Natl Acad Sci USA 101:15106–15111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark A, Ellem K (1966) A correlated morphological and functional study of the effects of actinomycin D on hela cells. II. The selective effects of low concentrations on the rapidly labeled types of RNA separated by column chromatography. In Annales Medicinae Experimentalis Et Biologiae Fenniae 44:100–108

    CAS  Google Scholar 

  • Clark AM, Love R, Studzinski GP, Ellem KA (1967) A correlated morphological and functional study of the effects of actinomycin D on HeLa cells. I. Effects on the nucleolar and cytoplasmic ribonucleoproteins. Exp Cell Res 45:106–119

    Article  CAS  PubMed  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301

    Article  CAS  PubMed  Google Scholar 

  • Cremer T, Cremer M (2010) Chromosome territories. Cold Spring Harb Perspect Biol 2:a003889

    Article  PubMed  PubMed Central  Google Scholar 

  • Cremer T, Cremer M, Hübner B, Strickfaden H, Smeets D, Popken J, Sterr M, Markaki Y, Rippe K, Cremer C (2015) The 4D nucleome: evidence for a dynamic nuclear landscape based on co-aligned active and inactive nuclear compartments. FEBS Lett 589:2931–2943

    Article  CAS  PubMed  Google Scholar 

  • Cvackova Z, Masata M, Stanek D, Fidlerova H, Raska I (2009) Chromatin position in human HepG2 cells: although being non-random, significantly changed in daughter cells. J Struct Biol 165:107–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dekker J, Alber F, Aufmkolk S, Beliveau BJ, Bruneau BG, Belmont AS, Bintu L, Boettiger A, Calandrelli R, Disteche CM et al (2023) Spatial and temporal organization of the genome: current state and future aims of the 4D nucleome project. Mol Cell 83:2624–2640

    Article  CAS  PubMed  Google Scholar 

  • Dietzel S, Belmont AS (2001) Reproducible but dynamic positioning of DNA in chromosomes during mitosis. Nat Cell Biol 3:767–770

    Article  CAS  PubMed  Google Scholar 

  • Eykelenboom JK, Gierliński M, Yue Z, Hegarat N, Pollard H, Fukagawa T, Hochegger H, Tanaka TU (2019) Live imaging of marked chromosome regions reveals their dynamic resolution and compaction in mitosis. J Cell Biol 218:1531–1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finn EH, Misteli T (2019) Molecular basis and biological function of variability in spatial genome organization. Science 365

  • Frankowski KJ, Wang C, Patnaik S, Schoenen FJ, Southall N, Li D, Teper Y, Sun W, Kandela I, Hu D et al (2018) Metarrestin, a perinucleolar compartment inhibitor, effectively suppresses metastasis. Sci Transl Med 10

  • Gallego J, Ortiz AR, De Pascual-Teresa B, Gago F (1997) Structure-affinity relationships for the binding of actinomycin D to DNA. J Comput Aided Mol Des 11:114–128

    Article  CAS  PubMed  Google Scholar 

  • Gerlich D, Beaudouin J, Kalbfuss B, Daigle N, Eils R, Ellenberg J (2003) Global chromosome positions are transmitted through mitosis in mammalian cells. Cell 112:751–764

    Article  CAS  PubMed  Google Scholar 

  • Ide S, Imai R, Ochi H, Maeshima K (2020) Transcriptional suppression of ribosomal DNA with phase separation. Sci Adv 6

  • Inoué S (2013) Video microscopy. Springer, New York

    Google Scholar 

  • Jacob MD, Audas TE, Uniacke J, Trinkle-Mulcahy L, Lee S (2013) Environmental cues induce a long noncoding RNA-dependent remodeling of the nucleolus. Mol Biol Cell 24:2943–2953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janicki SM, Tsukamoto T, Salghetti SE, Tansey WP, Sachidanandam R, Prasanth KV, Ried T, Shav-Tal Y, Bertrand E, Singer RH et al (2004) From silencing to gene expression: real-time analysis in single cells. Cell 116:683–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kedinger C, Gniazdowski M, Mandel JL Jr, Gissinger F, Chambon P (1970) Alpha-amanitin: a specific inhibitor of one of two DNA-pendent RNA polymerase activities from calf thymus. Biochem Biophys Res Commun 38:165–171

    Article  CAS  PubMed  Google Scholar 

  • Khanna N, Hu Y, Belmont Andrew S (2014) HSP70 transgene directed motion to nuclear speckles facilitates heat shock activation. Curr Biol 24:1138–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura H, Cook PR (2001) Kinetics of core histones in living human cells: little exchange of H3 and H4 and some rapid exchange of H2B. J Cell Biol 153:1341–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kind J, Pagie L, Ortabozkoyun H, Boyle S, De Vries SS, Janssen H, Amendola M, Nolen LD, Bickmore WA, Van Steensel B (2013) Single-cell dynamics of genome-nuclear lamina interactions. Cell 153:178–192

    Article  CAS  PubMed  Google Scholar 

  • Larson DR, Zenklusen D, Wu B, Chao JA, Singer RH (2011) Real-time observation of transcription initiation and elongation on an endogenous yeast gene. Science 332:475–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindell TJ, Weinberg F, Morris PW, Roeder RG, Rutter WJ (1970) Specific inhibition of nuclear RNA polymerase II by alpha-amanitin. Science 170:447–449

    Article  CAS  PubMed  Google Scholar 

  • Misteli T (2020) The self-organizing genome: principles of genome architecture and function. Cell 183:28–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen VT, Giannoni F, Dubois MF, Seo SJ, Vigneron M, Kedinger C, Bensaude O (1996) In vivo degradation of RNA polymerase II largest subunit triggered by alpha-amanitin. Nucl Acids Res 24:2924–2929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry RP (1963) Selective effects of actinomycin D on the intracellular distribution of RNA synthesis in tissue culture cells. Exp Cell Res 29:400–406

    Article  CAS  Google Scholar 

  • Roukos V, Voss TC, Schmidt CK, Lee S, Wangsa D, Misteli T (2013) Spatial dynamics of chromosome translocations in living cells. Science 341:660–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoefl GI (1964) The effect of actinomycin D on the fine structure of the nucleolus. J Ultrastruct Res 10:224–243

    Article  CAS  PubMed  Google Scholar 

  • Shav-Tal Y, Darzacq X, Shenoy SM, Fusco D, Janicki SM, Spector DL, Singer RH (2004) Dynamics of single mRNPs in nuclei of living cells. Science 304:1797–1800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sparks TM, Harabula I, Pombo A (2020) Evolving methodologies and concepts in 4D nucleome research. Curr Opin Cell Biol 64:105–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tumbar T, Sudlow G, Belmont AS (1999) Large-scale chromatin unfolding and remodeling induced by VP16 acidic activation domain. J Cell Biol 145:1341–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Koningsbruggen S, Gierlinski M, Schofield P, Martin D, Barton GJ, Ariyurek Y, Den Dunnen JT, Lamond AI (2010) High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol Biol Cell 21:3735–3748

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Staalduinen J, Van Staveren T, Grosveld F, Wendt KS (2023) Live-cell imaging of chromatin contacts opens a new window into chromatin dynamics. Epigenet Chromatin 16:27

    Article  Google Scholar 

  • Van Steensel B, Belmont AS (2017) Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell 169:780–791

    Article  PubMed  PubMed Central  Google Scholar 

  • Vertii A, Ou J, Yu J, Yan A, Pages H, Liu H, Zhu LJ, Kaufman PD (2019) Two contrasting classes of nucleolus-associated domains in mouse fibroblast heterochromatin. Genome Res 29:1235–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Wang P, Tian F, Gao G, Huang L, Wei W, **e XS (2017) Painting a specific chromosome with CRISPR/Cas9 for live-cell imaging. Cell Res 27:298–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Michael Davidson (University of Florida) for the pcDNA3.1 Dendra2. We acknowledge that imaging work was performed at the Northwestern University Center for Advanced Microscopy, generously supported by NCI CCSG P30 CA060553 awarded to the Robert H Lurie Comprehensive Cancer Center. Wei Hong Yeo is supported by the Christina Enroth-Cugell and David Cugell Fellowship for Visual Neuroscience and Biomedical Engineering. We thank the NIH funding for HFZ (R01GM139151, R01GM140478, and U54CA268084) and for SH (U01DA052772).

Author information

Authors and Affiliations

Authors

Contributions

L.M.U.P performed cell maintenance and photoconversion experiments. W.H.Y performed image preprocessing and statistical analyses using MATLAB. L.M.U.P. and W.H.Y wrote the Materials and Methods. L.M.U.P. prepared Figs. 15 and supplementary videos (ESM_1, ESM_2, ESM_3). W.H.Y prepared Figs. 5d, S1, S2. S.H. wrote the Abstract, Introduction, Results and Discussion, and References. All authors reviewed the manuscript.

Corresponding author

Correspondence to Sui Huang.

Ethics declarations

Conflict of interest

Hao F. Zhang has financial interests in Opticent Inc., which did not support this work. The other authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 1691 KB)

Supplementary file2 (MP4 1264 KB)

Supplementary file3 (MP4 2208 KB)

Supplementary file4 (PDF 210 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phan, L.M.U., Yeo, WH., Zhang, H.F. et al. Dynamic chromosome association with nuclear organelles in living cells. Histochem Cell Biol 162, 149–159 (2024). https://doi.org/10.1007/s00418-024-02288-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-024-02288-8

Keywords

Navigation