Log in

Effect of decentration and tilt on the in vitro optical quality of monofocal and trifocal intraocular lenses

  • Cataract
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate and compare the effect of decentration and tilt on the optical quality of monofocal and trifocal intraocular lenses (IOL).

Methods

Optical quality of a monofocal IOL (AcrySof IQ SN60WF; Alcon Laboratories, Inc., USA) and a trifocal IOL (AcrySof IQ PanOptix; Alcon Laboratories, Inc., USA) was assessed using an in vitro optical bench (OptiSpheric IOL R&D; Trioptics GmbH, Germany). At apertures of 3.0 mm and 4.5 mm, modulation transfer function (MTF) at spatial frequency of 50 lp/mm, MTF curve and the United States Air Force (USAF) resolution test chart of the two IOLs were measured and compared at their focus with different degrees of decentration and tilt. Optical quality at infinity, 60 cm and 40 cm and the through-focus MTF curves were compared when the two IOLs were centered at apertures of 3.0 mm and 4.5 mm. Spectral transmittance of the two IOLs was measured by the UV–visible spectrophotometer (UV 3300 PC; MAPADA, China).

Results

The SN60WF and the PanOptix filtered blue light from 400 to 500 nm. Both IOLs at the far focus and the PanOptix at the intermediate focus showed a decrease in optical quality with increasing decentration and tilt. The PanOptix demonstrated enhanced optical quality compared to the previous gradient at the near focus at a decentration range of 0.3–0.7 mm with a 3.0 mm aperture, and 0.5 mm with a 4.5 mm aperture, whereas other conditions exhibited diminished optical quality with increasing decentration and tilt at the focus of both IOLs. When the two IOLs were centered, the SN60WF had better optical quality at infinity, while the PanOptix had better optical quality at 60 cm and 40 cm defocus. The optical quality of the SN60WF exceeded that of the PanOptix at far focus, with a 3 mm aperture decentration up to 0.7 mm and a 4.5 mm aperture decentration up to 0.3 mm; this observation held true for all tilts, irrespective of aperture size. As both decentration and tilt increased, the optical quality of the SN60WF deteriorated more rapidly than that of the PanOptix at the far focal point.

Conclusions

The SN60WF showed a decrease in optical quality with increasing decentration and tilt. Optical quality of the PanOptix at the near focus increased in some decentration conditions and decreased in some conditions, while it showed a decrease at the other focuses with increasing decentration. While tilt only had a negative effect on optical quality. When both IOLs were centered, the PanOptix provided a wider range of vision, while the SN60WF provided better far distance vision. At the far focus, the SN60WF has better resistance to tilt than the PanOptix, but the optical quality degrades more quickly when decentered and tilted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alio JL, Plaza-Puche AB, Fernandez-Buenaga R, Pikkel J, Maldonado M (2017) Multifocal intraocular lenses: an overview. Surv Ophthalmol 62:611–634. https://doi.org/10.1016/j.survophthal.2017.03.005

    Article  PubMed  Google Scholar 

  2. Shen Z, Lin Y, Zhu Y, Liu X, Yan J, Yao K (2017) Clinical comparison of patient outcomes following implantation of trifocal or bifocal intraocular lenses: a systematic review and meta-analysis. Sci Rep 7:45337. https://doi.org/10.1038/srep45337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li ZH, Xu WQ, Ye Z (2021) The importance of neuroadaptation after multifocal intraocular lens implantation. Zhonghua Yan Ke Za Zhi 57:6–10. https://doi.org/10.3760/cma.j.cn112142-20201015-00685

    Article  CAS  PubMed  Google Scholar 

  4. Sachdev G, Sachdev M (2017) Optimizing outcomes with multifocal intraocular lenses. Indian J Ophthalmol 65:1294. https://doi.org/10.4103/ijo.IJO_1072_17

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lawu T, Mukai K, Matsushima H, Senoo T (2019) Effects of decentration and tilt on the optical performance of 6 aspheric intraocular lens designs in a model eye. J Cataract Refract Surg 45:662–668. https://doi.org/10.1016/j.jcrs.2018.10.049

    Article  PubMed  Google Scholar 

  6. Carson D, Xu Z, Alexander E, Choi M, Zhao Z, Hong X (2016) Optical bench performance of 3 trifocal intraocular lenses. J Cataract Refract Surg 42:1361–1367. https://doi.org/10.1016/j.jcrs.2016.06.036

    Article  PubMed  Google Scholar 

  7. Chen XY, Wang YC, Zhao TY, Wang ZZ, Wang W (2022) Tilt and decentration with various intraocular lenses: a narrative review. World J Clin Cases 10:3639–3646. https://doi.org/10.12998/wjcc.v10.i12.3639

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liu XM, **e LX, Huang YS (2019) Effects of decentration and tilt at different orientations on the optical performance of a rotationally asymmetric multifocal intraocular lens. J Cataract Refract Surg 45:507–514. https://doi.org/10.1016/j.jcrs.2018.10.045

    Article  PubMed  Google Scholar 

  9. Ashena Z, Maqsood S, Ahmed SN, Nanavaty MA (2020) Effect of intraocular lens tilt and decentration on visual acuity, dysphotopsia and wavefront aberrations. Vision 4:41. https://doi.org/10.3390/vision4030041

    Article  PubMed  PubMed Central  Google Scholar 

  10. de Castro A, Rosales P, Marcos S (2007) Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. J Cataract Refract Surg 33:418–429. https://doi.org/10.1016/j.jcrs.2006.10.054

    Article  PubMed  Google Scholar 

  11. International Organization for Standardization (2014) Part 2: optical propierties and test methods. In: ISO 11979: Ophthalmic impants – Intraocular lenses – Geneva, Switzerland, pp 1–30

  12. Borkenstein AF, Borkenstein E, Luedtke H, Schmid R (2021) Optical bench analysis of 2 depth of focus intraocular lenses. Biome Hub 6:77–85. https://doi.org/10.1159/000519139

    Article  Google Scholar 

  13. Lang A, Portney V (1993) Interpreting multifocal intraocular lens modulation transfer functions. J Cataract Refract Surg 19:505–512. https://doi.org/10.1016/s0886-3350(13)80615-3

    Article  CAS  PubMed  Google Scholar 

  14. Mayer C, Son H, Łabuz G, Yildirim TM, Auffarth GU, Khoramnia R (2020) In vitro optical quality assessment of a monofocal IOL sutured to an artificial iris. J Cataract Refract Surg 46:1184–1188. https://doi.org/10.1097/j.jcrs.0000000000000287

    Article  PubMed  Google Scholar 

  15. Son HS, Labuz G, Khoramnia R, Merz P, Yildirim TM, Auffarth GU (2020) Ray propagation imaging and optical quality evaluation of different intraocular lens models. PLoS ONE 15:e228342. https://doi.org/10.1371/journal.pone.0228342

    Article  CAS  Google Scholar 

  16. Son HS, Tandogan T, Liebing S, Merz P, Choi CY, Khoramnia R, Auffarth GU (2017) In vitro optical quality measurements of three intraocular lens models having identical platform. BMC Ophthalmol 17:108. https://doi.org/10.1186/s12886-017-0460-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Song SH, Song IS, Oh SJ, Son H, Kang MH (2021) Optical bench simulation for intraocular lenses using field-tracing technology. PLoS ONE 16:e250543. https://doi.org/10.1371/journal.pone.0250543

    Article  CAS  Google Scholar 

  18. Son H, Łabuz G, Khoramnia R, Yildirim TM, Auffarth GU (2021) Laboratory analysis and ray visualization of diffractive optics with enhanced intermediate vision. BMC Ophthalmol 21:197. https://doi.org/10.1186/s12886-021-01958-8

    Article  PubMed  PubMed Central  Google Scholar 

  19. Łabuz G, Auffarth GU, Knorz MC, Son H, Yildirim TM, Khoramnia R (2020) Trifocality achieved through polypseudophakia: optical quality and light loss compared with a single trifocal intraocular lens. J Refract Surg 36:570–577. https://doi.org/10.3928/1081597X-20200715-01

    Article  PubMed  Google Scholar 

  20. García S, Salvá L, García-Delpech S, Martínez-Espert A, Ferrando V, Montagud-Martínez D (2022) Polychromatic assessment of a refractive segmented EDOF intraocular lens. J Clin Med 11:1480. https://doi.org/10.3390/jcm11061480

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tandogan T, Auffarth GU, Choi CY, Liebing S, Mayer C, Khoramnia R (2017) In vitro comparative optical bench analysis of a spherical and aspheric optic design of the same IOL model. BMC Ophthalmol 17:9. https://doi.org/10.1186/s12886-017-0407-5

    Article  PubMed  PubMed Central  Google Scholar 

  22. Vega F, Millán MS, Garzón N, Altemir I, Poyales F, Larrosa JM (2018) Visual acuity of pseudophakic patients predicted from in-vitro measurements of intraocular lenses with different design. Biomed Opt Express 9:4893. https://doi.org/10.1364/BOE.9.004893

    Article  PubMed  PubMed Central  Google Scholar 

  23. Remé CE, Grimm C, Hafezi F, Wenzel A, Williams TP (2000) Apoptosis in the retina: the silent death of vision. News Physiol Sci 15:120–124. https://doi.org/10.1152/physiologyonline.2000.15.3.120

    Article  PubMed  Google Scholar 

  24. Rezai KA, Gasyna E, Seagle BL, Norris JJ, Rezaei KA (2008) AcrySof Natural filter decreases blue light-induced apoptosis in human retinal pigment epithelium. Graefes Arch Clin Exp Ophthalmol 246:671–676. https://doi.org/10.1007/s00417-006-0484-2

    Article  PubMed  Google Scholar 

  25. Qian JL, Liao X, Tang YL, Tan QQ, Zhou GM, Lan CJ (2022) Comparative study of decentration, tilt and visual quality after implantation of aspherical intraocular lenses. Zhonghua Yan Ke Za Zhi 58:521–528. https://doi.org/10.3760/cma.j.cn112142-20211103-00518

    Article  CAS  PubMed  Google Scholar 

  26. Pérez-Gracia J, Varea A, Ares J, Vallés JA, Remón L (2020) Evaluation of the optical performance for aspheric intraocular lenses in relation with tilt and decenter errors. PLoS ONE 15:e232546. https://doi.org/10.1371/journal.pone.0232546

    Article  CAS  Google Scholar 

  27. Hirnschall N, Buehren T, Bajramovic F, Trost M, Teuber T, Findl O (2017) Prediction of postoperative intraocular lens tilt using swept-source optical coherence tomography. J Cataract Refract Surg 43:732–736. https://doi.org/10.1016/j.jcrs.2017.01.026

    Article  PubMed  Google Scholar 

  28. Wang L, de Souza RG, Weikert MP, Koch DD (2019) Evaluation of crystalline lens and intraocular lens tilt using a swept-source optical coherence tomography biometer. J Cataract Refract Surg 45:35–40. https://doi.org/10.1016/j.jcrs.2018.08.025

    Article  CAS  PubMed  Google Scholar 

  29. Gu XX, Chen XY, Yang GY, Wang W, **ao W, ** GM, Wang LH, Dai Y, Ruan XT, Liu ZZ, Luo LX, Liu YZ (2020) Determinants of intraocular lens tilt and decentration after cataract surgery. Ann Transl Med 8:921. https://doi.org/10.21037/atm-20-1008

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ortiz C, Esteve-Taboada JJ, Belda-Salmerón L, Monsálvez-Romín D, Domínguez-Vicent A (2016) Effect of decentration on the optical quality of two intraocular lenses. Optom Vis Sci 93:1552–1559. https://doi.org/10.1097/OPX.0000000000001004

    Article  PubMed  Google Scholar 

  31. Pérez-Gracia J, Ávila FJ, Ares J, Vallés JA, Remón L (2020) Misalignment and tilt effect on aspheric intraocular lens designs after a corneal refractive surgery. PLoS ONE 15:e243740. https://doi.org/10.1371/journal.pone.0243740

    Article  CAS  Google Scholar 

  32. Tandogan T, Son HS, Choi CY, Knorz MC, Auffarth GU, Khoramnia R (2017) Laboratory evaluation of the influence of decentration and pupil size on the optical performance of a monofocal, bifocal, and trifocal intraocular lens. J Refract Surg 33:808–812. https://doi.org/10.3928/1081597X-20171004-02

    Article  PubMed  Google Scholar 

  33. Barbero S, Marcos S, Jimenez-Alfaro I (2003) Optical aberrations of intraocular lenses measured in vivo and in vitro. J Opt Soc Am A Opt Image Sci Vis 20:1841–1851. https://doi.org/10.1364/josaa.20.001841

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Medical Research Project of Sichuan Province (grant number S21011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Jun Lan.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, RL., Tan, QQ., Liao, X. et al. Effect of decentration and tilt on the in vitro optical quality of monofocal and trifocal intraocular lenses. Graefes Arch Clin Exp Ophthalmol (2024). https://doi.org/10.1007/s00417-024-06490-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00417-024-06490-1

Keywords

Navigation