Log in

Zircon geochronology and geochemistry to constrain the youngest eruption events and magma evolution of the Mid-Miocene ignimbrite flare-up in the Pannonian Basin, eastern central Europe

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

A silicic ignimbrite flare-up episode occurred in the Pannonian Basin during the Miocene, coeval with the syn-extensional period in the region. It produced important correlation horizons in the regional stratigraphy; however, they lacked precise and accurate geochronology. Here, we used U–Pb (LA-ICP-MS and ID-TIMS) and (U–Th)/He dating of zircons to determine the eruption ages of the youngest stage of this volcanic activity and constrain the longevity of the magma storage in crustal reservoirs. Reliability of the U–Pb data is supported by (U–Th)/He zircon dating and magnetostratigraphic constraints. We distinguish four eruptive phases from 15.9 ± 0.3 to 14.1 ± 0.3 Ma, each of which possibly includes multiple eruptive events. Among these, at least two large volume eruptions (>10 km3) occurred at 14.8 ± 0.3 Ma (Demjén ignimbrite) and 14.1 ± 0.3 Ma (Harsány ignimbrite). The in situ U–Pb zircon dating shows wide age ranges (up to 700 kyr) in most of the crystal-poor pyroclastic units, containing few to no xenocrysts, which implies efficient recycling of antecrysts. We propose that long-lived silicic magma reservoirs, mostly kept as high-crystallinity mushes, have existed in the Pannonian Basin during the 16–14 Ma period. Small but significant differences in zircon, bulk rock and glass shard composition among units suggest the presence of spatially separated reservoirs, sometimes existing contemporaneously. Our results also better constrain the time frame of the main tectonic events that occurred in the Northern Pannonian Basin: We refined the upper temporal boundary (15 Ma) of the youngest counterclockwise block rotation and the beginning of a new deformation phase, which structurally characterized the onset of the youngest volcanic and sedimentary phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Annen C, Blundy JD, Leuthold J, Sparks RSJ (2015) Construction and evolution of igneous bodies: towards an integrated perspective of crustal magmatism. Lithos 230:206–221

    Article  Google Scholar 

  • Aydar E, Schmitt AK, Çubukçu HE, Akin L, Ersoy O, Sen E, Duncan RA, Atici G (2012) Correlation of ignimbrites in the central Anatolian volcanic province using zircon and plagioclase ages and zircon compositions. J Volcanol Geoth Res 213–214:83–97

    Article  Google Scholar 

  • Bachmann O, Bergantz GW (2003) Rejuvenation of the Fish Canyon magma body: a window into the evolution of large-volume silicic magma systems. Geology 31(9):789–792

    Article  Google Scholar 

  • Bachmann O, Bergantz GW (2004) On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. J Petrol 45(8):1565–1582

    Article  Google Scholar 

  • Bachmann O, Bergantz G (2008) The magma reservoirs that feed supereruptions. Elements 4(1):17–21

    Article  Google Scholar 

  • Bachmann O, Dungan MA, Lipman PW (2002) The Fish Canyon magma body, San Juan volcanic field, Colorado: rejuvenation and eruption of an upper-crustal batholith. J Petrol 43(8):1469–1503

    Article  Google Scholar 

  • Bachmann O, Charlier BLA, Lowenstern JB (2007a) Zircon crystallization and recycling in the magma chamber of the rhyolitic Kos Plateau Tuff (Aegean arc). Geology 35(1):73–76

    Article  Google Scholar 

  • Bachmann O, Oberli F, Dungan MA, Meier M, Mundil R, Fischer H (2007b) 40Ar/39Ar and U-Pb dating of the Fish Canyon magmatic system, San Juan Volcanic field, Colorado: evidence for an extended crystallization history. Chemical Geology 236(1–2):134–166

    Article  Google Scholar 

  • Bachmann O, Schoene B, Schnyder C, Spikings R (2010) The 40Ar/39Ar and U/Pb dating of young rhyolites in the Kos-Nisyros volcanic complex, Eastern Aegean Arc, Greece: age discordance due to excess 40Ar in biotite. Geochem Geophys Geosyst 11(8):Q0AA08

    Article  Google Scholar 

  • Bacon CR, Lowenstern JB (2005) Late Pleistocene granodiorite source for recycled zircon and phenocrysts in rhyodacite lava at Crater Lake, Oregon. Earth Planet Sci Lett 233(3–4):277–293

    Article  Google Scholar 

  • Barboni M, Schoene B (2014) Short eruption window revealed by absolute crystal growth rates in a granitic magma. Nat Geosci 7:524–528. doi:10.1038/ngeo2185

    Article  Google Scholar 

  • Bégué F, Deering CD, Gravley DM, Kennedy BM, Chambefort I, Gualda GAR, Bachmann O (2014) Extraction, storage and eruption of multiple isolated magma batches in the paired Mamaku and Ohakuri eruption, Taupo Volcanic Zone, New Zealand. J Petrol 55(8):1653–1684

    Article  Google Scholar 

  • Black LP, Kamo SL, Allen CM, Davis DW, Aleinikoff JN, Valley JW, Mundil R, Campbell IH, Korsch RJ, Williams IS, Foudoulis C (2004) Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chem Geol 205(1–2):115–140

    Article  Google Scholar 

  • Brown SJA, Fletcher IR (1999) SHRIMP U–Pb dating of the preeruption growth history of zircons from the 340 ka Whakamaru Ignimbrite, New Zealand: evidence for > 250 k.y. magma residence times. Geology 27(11):1035–1038

    Article  Google Scholar 

  • Chamberlain KJ, Wilson CJN, Wooden JL, Charlier BLA, Ireland TR (2014) New perspectives on the bishop tuff from zircon textures, ages and trace elements. J Petrol 55(2):395–426

    Article  Google Scholar 

  • Charlier BLA, Wilson CJN (2010) Chronology and evolution of caldera-forming and post-caldera magma systems at Okataina Volcano, New Zealand from Zircon U–Th Model-age Spectra. J Petrol 51(5):1121–1141

    Article  Google Scholar 

  • Charlier BLA, Wilson CJN, Lowenstern JB, Blake S, Van Calsteren PW, Davidson JP (2005) Magma generation at a large, hyperactive silicic volcano (Taupo, New Zealand) Revealed by U–Th and U–Pb systematics in zircons. J Petrol 46(1):3–32

    Article  Google Scholar 

  • Claiborne LL, Miller CF, Walker BA, Wooden JL, Mazdab FK, Bea F (2006) Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: an example from the Spirit Mountain batholith, Nevada. Miner Mag 70(5):517–543

    Article  Google Scholar 

  • Claiborne LL, Miller CF, Flanagan DM, Clynne MA, Wooden JL (2010) Zircon reveals protracted magma storage and recycling beneath Mount St. Helens. Geology 38(11):1011–1014

    Article  Google Scholar 

  • Compston W, Williams IS, Meyer C (1984) U–Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. J Geophys Res Solid Earth 89(S02):B525–B534

    Article  Google Scholar 

  • Coney PJ (1978) Mesozoic–Cenozoic Cordilleran plate tectonics. In: Smith RB, Eaton GP (eds) Cenozoic tectonics and regional geophysics of the western Cordillera, vol 152. Geological Society of America Memoirs, Boulder, Colorado, pp 33–50

  • Cooper KM, Kent AJR (2014) Rapid remobilization of magmatic crystals kept in cold storage. Nature 506:480–483

    Article  Google Scholar 

  • Cooper GF, Wilson CJN, Millet M-A, Baker JA, Smith EGC (2012) Systematic tap** of independent magma chambers during the 1 Ma Kidnappers supereruption. Earth Planet Sci Lett 313–314:23–33

    Article  Google Scholar 

  • Cooper G, Wilson CN, Charlier BA, Wooden J, Ireland T (2014) Temporal evolution and compositional signatures of two supervolcanic systems recorded in zircons from Mangakino volcanic centre, New Zealand. Contrib Mineral Petrol 167(6):1–23

    Google Scholar 

  • Costa F (2008) Residence times of silicic magmas associated with calderas. In: Gottsmann J, M Joan (eds) Developments in volcanology, vol 10. Elsevier, Amsterdam, pp 1–55

    Google Scholar 

  • Czuppon G, Lukács R, Harangi S, Mason PRD, Ntaflos T (2012) Mixing of crystal mushes and melts in the genesis of the Bogács Ignimbrite suite, northern Hungary: an integrated geochemical investigation of mineral phases and glasses. Lithos 148:71–85

    Article  Google Scholar 

  • Danišík M, Shane P, Schmitt AK, Hogg A, Santos GM, Storm S, Evans NJ, Keith Fifield L, Lindsay JM (2012) Re-anchoring the late Pleistocene tephrochronology of New Zealand based on concordant radiocarbon ages and combined 238U/230Th disequilibrium and (U–Th)/He zircon ages. Earth Planet Sci Lett 349–350:240–250

    Article  Google Scholar 

  • Danišík M, Fodor L, Dunkl I, Gerdes A, Csizmeg J, Hámor-Vidó M, Evans NJ (2015) A multi-system geochronology in the Ad-3 borehole, Pannonian Basin (Hungary) with implications for dating volcanic rocks by low-temperature thermochronology and for interpretation of (U–Th)/He data. Terra Nova 27:258–269

    Article  Google Scholar 

  • Davis DW, Williams IS, Krogh TE (2003) Historical development of zircon geochronology. Rev Mineral Geochem 53:145–181

    Article  Google Scholar 

  • de Silva SL (1989) Altiplano-Puna volcanic complex of the central Andes. Geology 17:1102–1106

    Article  Google Scholar 

  • Deering CD, Bachmann O, Vogel TA (2011) The Ammonia Tanks Tuff: erupting a melt-rich rhyolite cap and its remobilized crystal cumulate. Earth Planet Sci Lett 310(3–4):518–525

    Article  Google Scholar 

  • Dunkl I, Árkai P, Balogh K, Csontos L, Nagy G (1994) Modelling the thermal history using fission track data—exhumation of Bükk Mountains, Inner Western Carpathians (in Hungarian with English abstract). Földtani Közlöny 124:1–24

    Google Scholar 

  • Ellis BS, Wolff JA (2012) Complex storage of rhyolite in the central Snake River Plain. J Volcanol Geoth Res 211–212:1–11

    Article  Google Scholar 

  • Evans NJ, Byrne JP, Keegan JT, Dotter LE (2005) Determination of Uranium and Thorium in zircon, apatite, and fluorite: application to laser (U–Th)/He thermochronology. J Anal Chem 60(12):1159–1165

    Article  Google Scholar 

  • Farley KA (2002) (U–Th)/He dating: techniques, calibrations, and applications. Rev Mineral Geochem 47(1):819–844

    Article  Google Scholar 

  • Farley KA, Wolf RA, Silver LT (1996) The effects of long alpha-stop** distances on (U–Th)/He ages. Geochim Cosmochim Acta 60(21):4223–4229

    Article  Google Scholar 

  • Ferry JM, Watson EB (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol 154(4):429–437

    Article  Google Scholar 

  • Frazer RE, Coleman DS, Mills RD (2014) Zircon U-Pb geochronology of the Mount Givens Granodiorite: implications for the genesis of large volumes of eruptible magma. J Geophys Res Solid Earth 119(4):2013JB010716

    Google Scholar 

  • Gebauer S, Schmitt A, Pappalardo L, Stockli D, Lovera O (2014) Crystallization and eruption ages of Breccia Museo (Campi Flegrei caldera, Italy) plutonic clasts and their relation to the Campanian ignimbrite. Contrib Mineral Petrol 167(1):1–18

    Google Scholar 

  • Gee JS, Kent DV (2007) 5.12—Source of oceanic magnetic anomalies and the geomagnetic polarity timescale. In: Schubert G (ed) Treatise on geophysics. Elsevier, Amsterdam, pp 455–507

    Chapter  Google Scholar 

  • Gehrels GE, Valencia VA, Ruiz J (2008) Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation–multicollector–inductively coupled plasma-mass spectrometry. Geochem Geophys Geosyst 9(3):Q03017

    Article  Google Scholar 

  • Gelman SE, Gutiérrez FJ, Bachmann O (2013) On the longevity of large upper crustal silicic magma reservoirs. Geology 41:759–762

    Article  Google Scholar 

  • Ghiorso M, Gualda GR (2013) A method for estimating the activity of titania in magmatic liquids from the compositions of coexisting rhombohedral and cubic iron–titanium oxides. Contrib Mineral Petrol 165(1):73–81

    Article  Google Scholar 

  • Glazner AF, Bartley JM, Coleman DS, Gray W, Taylor RZ (2004) Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today 14:4–11

    Article  Google Scholar 

  • Glazner AF, Coleman DS, Bartley JM (2008) The tenuous connection between high-silica rhyolites and granodiorite plutons. Geology 36(2):183–186

    Article  Google Scholar 

  • Glazner A, Coleman D, Mills R (2015) The volcanic–plutonic connection. Springer, Berlin, Heidelberg, pp 1–22

    Google Scholar 

  • Gualda GAR, Pamukcu AS, Ghiorso MS, Anderson AT Jr, Sutton SR, Rivers ML (2012) Timescales of quartz crystallization and the Longevity of the Bishop giant magma body. PLoS ONE 7(5):e37492. doi:10.1371/journal.pone.0037492

    Article  Google Scholar 

  • Guenthner WR, Reiners PW, Ketcham RA, Nasdala L, Giester G (2013) Helium diffusion in natural zircon: radiation damage, anisotropy, and the interpretation of zircon (U–Th)/He thermochronology. Am J Sci 313(3):145–198

    Article  Google Scholar 

  • Guillong M, Meier DL, Allan MM, Heinrich CA, Yardley BWD (2008) SILLS: a MATLAB-based program for the reduction of laser ablation ICP-MS data of homogeneous materials and inclusions. Mineral Assoc Canada Short Course 40:328–333

    Google Scholar 

  • Guillong M, von Quadt A, Sakata S, Peytcheva I, Bachmann O (2014) LA-ICP-MS Pb–U dating of young zircons from the Kos-Nisyros volcanic centre, SE Aegean arc. J Anal At Spectrom 29(6):963–970

    Article  Google Scholar 

  • Hámor G, Pogácsás G, Jámbor Á (2001) Paleogeographic/structural evolutionary stages and the related volcanism of the Carpathian-Pannonian Region. Acta Geol Hung 44:193–222

    Google Scholar 

  • Harangi S, Lenkey L (2007) Genesis of the Neogene to Quaternary volcanism in the Carpathian-Pannonian region: role of subduction, extension, and mantle plume. Geol Soc Am Spec Pap 418:67–92

    Google Scholar 

  • Harangi S, Lukács R (2009) On the age of the Harsány ignimbrite, Bükkalja volcanic field, Northern Hungary—a discussion. Cent Eur Geol 52(1):43–50

    Article  Google Scholar 

  • Harangi S, Mason PRD, Lukács R (2005) Correlation and petrogenesis of silicic pyroclastic rocks in the Northern Pannonian Basin, Eastern-Central Europe: in situ trace element data of glass shards and mineral chemical constraints. J Volcanol Geoth Res 143(4):237–257

    Article  Google Scholar 

  • Harangi S, Lukács R, Schmitt AK, Dunkl I, Molnár K, Kiss B, Seghedi I, Novothny Á, Molnár M (2015) Constraints on the timing of Quaternary volcanism and duration of magma residence at Ciomadul volcano, east–central Europe, from combined U–Th/He and U–Th zircon geochronology. J Volcanol Geoth Res 301:66–80

    Article  Google Scholar 

  • Hildreth W (2004) Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: several contiguous but discrete systems. J Volcanol Geoth Res 136(3–4):169–198

    Article  Google Scholar 

  • Hildreth W, Wilson CJN (2007) Compositional zoning of the bishop tuff. J Petrol 48(5):951–999

    Article  Google Scholar 

  • Horváth F (1993) Towards a mechanical model for the formation of the Pannonian basin. Tectonophysics 226(1–4):333–357

    Article  Google Scholar 

  • Horváth F, Royden LH (1981) Mechanism for formation of the intra-Carpathian basins: a review. Earth Evol Sci 1:307–316

    Google Scholar 

  • Horváth F, Bada G, Szafián P, Tari G, Ádám A, Cloetingh S (2006) Formation and deformation of the Pannonian Basin: constraints from observational data. Geol Soc Lond Mem 32(1):191–206

    Article  Google Scholar 

  • Horváth F, Musitz B, Balázs A, Végh A, Uhrin A, Nádor A, Koroknai B, Pap N, Tóth T, Wórum G (2015) Evolution of the Pannonian basin and its geothermal resources. Geothermics 53:328–352

    Article  Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem 53(1):27–62

    Article  Google Scholar 

  • Hoskin PWO, Kinny PD, Wyborn D, Chappell BW (2000) Identifying accessory mineral saturation during differentiation in granitoid magmas: an integrated approach. J Petrol 41(9):1365–1396

    Article  Google Scholar 

  • Huber C, Bachmann O, Dufek J (2010) The limitations of melting on the reactivation of silicic mushes. J Volcanol Geoth Res 195(2–4):97–105

    Article  Google Scholar 

  • Huppert HE, Sparks RSJ (1988) The generation of granitic magmas by intrusion of basalt into continental crust. J Petrol 29(3):599–624

    Article  Google Scholar 

  • Hurai V, Danišík M, Huraiová M, Paquette J-L, Ádám A (2013) Combined U/Pb and (U–Th)/He geochronometry of basalt maars in Western Carpathians: implications for age of intraplate volcanism and origin of zircon metasomatism. Contrib Mineral Petrol 166(4):1235–1251

    Article  Google Scholar 

  • Iwano H, Orihashi Y, Hirata T, Ogasawara M, Danhara T, Horie K, Hasebe N, Sueoka S, Tamura A, Hayasaka Y, Katsube A, Ito H, Tani K, Kimura J-I, Chang Q, Kouchi Y, Haruta Y, Yamamoto K (2013) An inter-laboratory evaluation of OD-3 zircon for use as a secondary U–Pb dating standard. Island Arc 22(3):382–394

    Article  Google Scholar 

  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem Geol 211(1–2):47–69

    Article  Google Scholar 

  • Jaffey AH, Flynn KF, Glendenin LE, Bentley WC, Essling AM (1971) Precision measurement of half-lives and specific activities of 235U and 238U. Phys Rev C 4(5):1889–1906

    Article  Google Scholar 

  • Johannes W, Holtz F (1996) Petrogenesis and experimental petrology of granitic rocks. Springer, Berlin

    Book  Google Scholar 

  • Klemetti EW, Clynne MA (2014) Localized rejuvenation of a crystal mush recorded in zircon temporal and compositional variation at the Lassen Volcanic Center, northern California. PLoS One 9(12):e113157

    Article  Google Scholar 

  • Klemetti EW, Deering CD, Cooper KM, Roeske SM (2011) Magmatic perturbations in the Okataina Volcanic Complex, New Zealand at thousand-year timescales recorded in single zircon crystals. Earth Planet Sci Lett 305(1):185–194

    Article  Google Scholar 

  • Košler J, Sylvester PJ (2003) Present trends and the future of zircon in geochronology: laser ablation ICPMS. Rev Mineral Geochem 53(1):243–275

    Article  Google Scholar 

  • Koyaguchi T, Kaneko K (1999) A two-stage thermal evolution model of magmas in continental crust. J Petrol 40:241–254

    Article  Google Scholar 

  • Lenkey L, Dövényi P, Horváth F, Cloetingh S (2002) Geothermics of the Pannonian Basin and its bearing on the neotectonics. EGU Stephan Mueller Special Publications Series, vol 3, pp 29–34

  • Less Gy, Kovács S, Pelikán P, Pentelényi L, Sásdi L (2005a) Geology of the Bükk Mountains. Magyar Állami Földtani Intézet, Budapest

    Google Scholar 

  • Less Gy, Gulácsi Z, Kovács S, Pelikán P, Pentelényi L, Rezessy A, Sásdi L (2005b) Geological map of the Bükk Mountains 1: 50 000. Magyar Állami Földtani Intézet, Budapest

    Google Scholar 

  • Lipman PW (2007) Incremental assembly and prolonged consolidation of Cordilleran magma chambers: evidence from the Southern Rocky Mountain volcanic field. Geosphere 3(1):42–70

    Article  Google Scholar 

  • Lipman PW, Bachmann O (2015) Ignimbrites to batholiths: integrating perspectives from geological, geophysical, and geochronological data. Geosphere 11(3):705–743

    Article  Google Scholar 

  • Lipman PW, Glazner AF (1991) Introduction to Middle Tertiary Cordilleran volcanism: magma sources and relations to regional tectonics. J Geophys Res 96:13193–13199

    Article  Google Scholar 

  • Lipman PW, Prostka HJ, Christiansen RL (1971) Evolving subduction zones in the Western United States, as interpreted from igneous rocks. Science 174:821–825

    Article  Google Scholar 

  • Ludwig KR (2012) Isoplot, A geochronological toolkit for Microsoft excel. Berkeley Geochronology Center, Special Publication 5

  • Lukács R, Harangi S, Ntaflos T, Mason PRD (2005) Silicate melt inclusions in the phenocrysts of the Szomolya Ignimbrite, Bükkalja Volcanic Field (Northern Hungary): implications for magma chamber processes. Chem Geol 223(1–3):46–67

    Article  Google Scholar 

  • Lukács R, Harangi S, Ntaflos T, Koller F, Pécskay Z (2007) A Bükkalján megjelenő felső riolittufaszint vizsgálati eredményei: a harsányi ignimbrit egység. Földtani Közlöny 137(4):487–514

    Google Scholar 

  • Lukács R, Harangi S, Mason PRD, Ntaflos T (2009) Bimodal pumice populations in the 13.5 Ma Harsány ignimbrite, Bükkalja Volcanic Field, Northern Hungary: syn-eruptive mingling of distinct rhyolitic magma batches? Central Eur Geol 52(1):51–72

    Article  Google Scholar 

  • Lukács R, Harangi S, Radócz G, Kádár M, Pécskay Z, Ntaflos T (2010) A Nyékládháza-1, Miskolc-7 és Miskolc-8 sz. fúrások miocén vulkáni kőzetei és párhuzamosításuk a Bükkalja vulkáni képződményeivel. Földt Közlöny 140(1):31–48

    Google Scholar 

  • Marillo-Sialer E, Woodhead J, Hergt J, Greig A, Guillong M, Gleadow A, Evans N, Paton C (2014) The zircon ‘matrix effect’: evidence for an ablation rate control on the accuracy of U–Pb age determinations by LA-ICP-MS. J Anal At Spectrom 29(6):981–989

    Article  Google Scholar 

  • Márton E, Fodor L (1995) Combination of palaeomagnetic and stress data—a case study from North Hungary. Tectonophysics 242(1–2):99–114

    Article  Google Scholar 

  • Márton E, Pécskay Z (1998) Complex evaluation of paleomagnetic and K/Ar isotope data of the Miocene ignimbritic volcanics in the Bükk Foreland, Hungary. Acta Geol Hung 41:467–476

    Google Scholar 

  • Márton E, Zelenka T, Márton P (2007) Paleomagnetic correlation of Miocene pyroclastics of the Bükk Mts. and their forelands. Central Eur Geol 50(1):47–57

    Article  Google Scholar 

  • Mattinson JM (2005) Zircon U-Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem Geol 220(1–2):47–66

    Article  Google Scholar 

  • Memeti V, Paterson S, Matzel J, Mundil R, Okaya D (2010) Magmatic lobes as “snapshots” of magma chamber growth and evolution in large, composite batholiths: an example from the Tuolumne intrusion, Sierra Nevada, California. Geol Soc Am Bull 122(11–12):1912–1931

    Article  Google Scholar 

  • Miller JS, Matzel JEP, Miller CF, Burgess SD, Miller RB (2007) Zircon growth and recycling during the assembly of large, composite arc plutons. J Volcanol Geoth Res 167(1–4):282–299

    Article  Google Scholar 

  • Mills RD (2012) Re-evaluating pluton/volcano connections and igneous textures in light of incremental magma emplacement. PhD Thesis Chapel Hill. North Carolina, University of North Carolina

  • Nardi LVS, Formoso MLL, Müller IF, Fontana E, Jarvis K, Lamarão C (2013) Zircon/rock partition coefficients of REEs, Y, Th, U, Nb, and Ta in granitic rocks: uses for provenance and mineral exploration purposes. Chemical Geology 335:1–7

    Article  Google Scholar 

  • Nemchin AA, Horstwood MSA, Whitehouse MJ (2013) High-spatial-resolution geochronology. Elements 9(1):31–37

    Article  Google Scholar 

  • Paquette J-L, Le Pennec J-L (2012) 3.8 Ga zircons sampled by Neogene ignimbrite eruptions in Central Anatolia. Geology 40(3):239–242

    Article  Google Scholar 

  • Paton C, Woodhead JD, Hellstrom JC, Hergt JM, Greig A, Maas R (2010) Improved laser ablation U–Pb zircon geochronology through robust downhole fractionation correction. Geochem Geophys Geosyst 11(3):Q0AA06

    Article  Google Scholar 

  • Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. J Anal At Spectrom 26(12):2508–2518

    Article  Google Scholar 

  • Pécskay Z, Lexa J, Szakács A, Seghedi I, Balogh K, Konecny V, Zelenka T, Kovac M, Póka T, Fülöp A, Márton E, Panaiotu C, Cvetkovic V (2006) Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathian area. Geol Carpath 57:511–530

    Google Scholar 

  • Petrik A, Beke B, Fodor L (2014) Combined analysis of faults and deformation bands reveals the Cenozoic structural evolution of the southern Bükk foreland (Hungary). Tectonophysics 633:43–62

    Article  Google Scholar 

  • Petrik A, Beke B, Fodor L, Lukács R (2015) Cenozoic structural evolution of the southwestern Bükk Mts. and the southern part of the Darnó Deformation Belt (NE Hungary). Geol Carp (in press)

  • Petrus JA, Kamber BS (2012) VizualAge: a novel approach to laser ablation ICP-MS U–Pb geochronology data reduction. Geostand Geoanal Res 36(3):247–270

    Article  Google Scholar 

  • Reid MR, Coath CD (2000) In situ U–Pb ages of zircons from the Bishop Tuff: no evidence for long crystal residence times. Geology 28(5):443–446

    Article  Google Scholar 

  • Reid M, Vazquez J, Schmitt A (2011) Zircon-scale insights into the history of a Supervolcano, Bishop Tuff, Long Valley, California, with implications for the Ti-in-zircon geothermometer. Contrib Mineral Petrol 161(2):293–311

    Article  Google Scholar 

  • Reiners PW (2005) Zircon (U–Th)/He thermochronometry. Mineral Soc Am Rev Mineral Geochem 58:151–179

    Article  Google Scholar 

  • Reiners PW, Farley KA, Hickes HJ (2002) He diffusion and (U–Th)/He thermochronometry of zircon: initial results from Fish Canyon Tuff and Gold Butte. Tectonophysics 349(1–4):297–308

    Article  Google Scholar 

  • Reiners PW, Spell TL, Nicolescu S, Zanetti KA (2004) Zircon (U–Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating. Geochim Cosmochim Acta 68(8):1857–1887

    Article  Google Scholar 

  • Ryerson FJ, Watson EB (1987) Rutile saturation in magmas: implications for Ti–Nb–Ta depletion in orogenic rock series. Earth Planet Sci Lett 86:225–239

    Article  Google Scholar 

  • Sambridge MS, Compston W (1994) Mixture modeling of multi-component data sets with application to ion-probe zircon ages. Earth Planet Sci Lett 128(3–4):373–390

    Article  Google Scholar 

  • Schaltegger U, Brack P, Ovtcharova M, Peytcheva I, Schoene B, Stracke A, Marocchi M, Bargossi GM (2009) Zircon and titanite recording 1.5 million years of magma accretion, crystallization and initial cooling in a composite pluton (southern Adamello batholith, northern Italy). Earth Planet Sci Lett 286(1–2):208–218

    Article  Google Scholar 

  • Scharer U (1984) The effect of initial 230Th disequilibrium on young U-Pb ages: the Makalu case, Himalaya. Earth Planet Sci Lett 67:191–204

    Article  Google Scholar 

  • Schmitt AK, Stockli DF, Hausback BP (2006) Eruption and magma crystallization ages of Las Tres Vírgenes (Baja California) constrained by combined 230Th/238U and (U–Th)/He dating of zircon. J Volcanol Geoth Res 158(3–4):281–295

    Article  Google Scholar 

  • Schmitt AK, Stockli DF, Lindsay JM, Robertson R, Lovera OM, Kislitsyn R (2010) Episodic growth and homogenization of plutonic roots in arc volcanoes from combined U–Th and (U–Th)/He zircon dating. Earth Planet Sci Lett 295(1–2):91–103

    Article  Google Scholar 

  • Schmitt A, Danišík M, Evans N, Siebel W, Kiemele E, Aydin F, Harvey J (2011) Acigöl rhyolite field, Central Anatolia (part 1): high-resolution dating of eruption episodes and zircon growth rates. Contrib Mineral Petrol 162(6):1215–1231

    Article  Google Scholar 

  • Schoene B, Schaltegger U, Brack P, Latkoczy C, Stracke A, Günther D (2012) Rates of magma differentiation and emplacement in a ballooning pluton recorded by U–Pb TIMS-TEA, Adamello batholith, Italy. Earth Planet Sci Lett 355–356:162–173

    Article  Google Scholar 

  • Shane P, Nairn IA, Smith VC (2005) Magma mingling in the ∼50 ka Rotoiti eruption from Okataina Volcanic Centre: implications for geochemical diversity and chronology of large volume rhyolites. J Volcanol Geoth Res 139(3–4):295–313

    Article  Google Scholar 

  • Shane P, Martin SB, Smith VC, Beggs KF, Darragh MB, Cole JW, Nairn IA (2007) Multiple rhyolite magmas and basalt injection in the 17.7 ka Rerewhakaaitu eruption episode from Tarawera volcanic complex, New Zealand. J Volcanol Geoth Res 164(1–2):1–26

    Article  Google Scholar 

  • Shane P, Nairn IA, Smith VC, Darragh M, Beggs K, Cole JW (2008) Silicic recharge of multiple rhyolite magmas by basaltic intrusion during the 22.6 ka Okareka Eruption Episode, New Zealand. Lithos 103(3):527–549

    Article  Google Scholar 

  • Simon JI, Renne PR, Mundil R (2008) Implications of pre-eruptive magmatic histories of zircons for U–Pb geochronology of silicic extrusions. Earth Planet Sci Lett 266(1–2):182–194

    Article  Google Scholar 

  • Simon J, Weis D, DePaolo D, Renne P, Mundil R, Schmitt A (2014) Assimilation of preexisting Pleistocene intrusions at Long Valley by periodic magma recharge accelerates rhyolite generation: rethinking the remelting model. Contrib Mineral Petrol 167(1):1–34

    Google Scholar 

  • Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plešovice zircon—a new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol 249(1–2):1–35

    Article  Google Scholar 

  • Smith VC, Shane P, Nairn IA (2004) Reactivation of a rhyolitic magma body by new rhyolitic intrusion before the 15.8 ka Rotorua eruptive episode: implications for magma storage in the Okataina Volcanic Centre, New Zealand. J Geol Soc 161(5):757–772

    Article  Google Scholar 

  • Sparks RSJ, Huppert HE, Wilson CJN (1990) Comment on “Evidence for long residence times of rhyolitic magma in the Long Valley magmatic system: the isotopic record in precaldera lavas of Glass Mountain” by A.N. Halliday, G.A. Mahood, P. Holden, J.M. Metz, T.J. Dempster and J.P. Davidson. Earth Planet Sci Lett 99(4):387–389

    Article  Google Scholar 

  • Storm S, Schmitt A, Shane P, Lindsay J (2014) Zircon trace element chemistry at sub-micrometer resolution for Tarawera volcano, New Zealand, and implications for rhyolite magma evolution. Contrib Miner Petrol 167:1000

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds), Magmatism in the oceanic basins, Geological Society of Special Publication No. 42, pp 313–345

  • Szabó C, Harangi S, Csontos L (1992) Review of Neogene and Quaternary volcanism of the Carpathian-Pannonian region. Tectonophysics 208(1–3):243–256

    Article  Google Scholar 

  • Szakács A, Zelenka T, Márton E, Pécskay Z, Póka T, Seghedi I (1998) Miocene acidic explosive volcanism in the Bükk Foreland, Hungary: identifying eruptive sequences and searching for source locations. Acta Geol Hung 41:413–435

    Google Scholar 

  • Széky-Fux V, Kozák M, Püspöki Z (2007) Covered Neogene volcanism of East Hungary. Acta Geographica ac Geologica et Meteorologica Debrecina, Geology, Geomorphology, Physical Geography Series 2, pp 79–104

  • Tagami T, Farley KA, Stockli DF (2003) (U–Th)/He geochronology of single zircon grains of known Tertiary eruption age. Earth Planet Sci Lett 207(1–4):57–67

    Article  Google Scholar 

  • Tari G (1988) Strike-slip origin of the Vatta-Maklár Trough, northeastern Hungary. Acta Geol Hung 31(1–2):101–109

    Google Scholar 

  • Tari G, Dövényi P, Horváth F, Dunkl I, Lenkey L, Stefanescu M, Szafián P, Tóth T (1999) Lithospheric structure of the Pannonian basin derived from seismic, gravity and geothermal data. In Durand B, Jolivet L, Horváth F, Séranne M (eds) The Mediterranean Basins: tertiary extension within the Alpine orogen. Geological Society, London, Special Publication 156, pp 215–250

  • Vazquez J, Reid M (2002) Time scales of magma storage and differentiation of voluminous high-silica rhyolites at Yellowstone caldera, Wyoming. Contrib Mineral Petrol 144(3):274–285

    Article  Google Scholar 

  • von Quadt A, Gallhofer D, Guillong M, Peytcheva I, Waelle M, Sakata S (2014) U–Pb dating of CA/non-CA treated zircons obtained by LA-ICP-MS and CA-TIMS techniques: impact for their geological interpretation. J Anal At Spectrom 29(9):1618–1629

    Article  Google Scholar 

  • Walker BA Jr, Miller CF, Lowery Claiborne L, Wooden JL, Miller JS (2007) Geology and geochronology of the Spirit Mountain batholith, southern Nevada: implications for timescales and physical processes of batholith construction. J Volcanol Geoth Res 167(1–4):239–262

    Article  Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64(2):295–304

    Article  Google Scholar 

  • Watson EB, Harrison TM (2005) Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 308:841–844

    Article  Google Scholar 

  • Wiedenbeck M, AllÉ P, Corfu F, Griffin WL, Meier M, Oberli F, Quadt AV, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newslett 19(1):1–23

    Article  Google Scholar 

  • Williams IS (1998) U–Th–Pb geochronology by ion microprobe. Rev. Econ. Geol. 7:1–35

    Article  Google Scholar 

  • Wilson CJN, Charlier BLA (2009) Rapid rates of magma generation at contemporaneous magma systems, Taupo Volcano, New Zealand: insights from U–Th model-age spectra in zircons. J Petrol 50(5):875–907

    Article  Google Scholar 

  • Wotzlaw J-F, Schaltegger U, Frick DA, Dungan MA, Gerdes A, Günther D (2013) Tracking the evolution of large-volume silicic magma reservoirs from assembly to supereruption. Geology 41(8):867–870

    Article  Google Scholar 

  • Wotzlaw J-F, Bindeman IN, Watts KE, Schmitt AK, Caricchi L, Schaltegger U (2014) Linking rapid magma reservoir assembly and eruption trigger mechanisms at evolved Yellowstone-type supervolcanoes. Geology 42(9):807–810

    Article  Google Scholar 

  • Wotzlaw J-F, Bindeman IN, Stern RA, D’Abzac F-X, Schaltegger U (2015) Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions. Sci Rep 5:14026

    Article  Google Scholar 

  • Zelenka T, Póka T, Márton E, Pécskay Z (2004) A Tari Dácittufa Formáció típuszelvényének felülvizsgálata. MÁFI Évi Jelentés 2004-ről, pp 73–84

  • Zimmerer MJ, McIntosh WC (2012) The geochronology of volcanic and plutonic rocks at the Questa caldera: constraints on the origin of caldera-related silicic magmas. Geol Soc Am Bull 124(7–8):1394–1408

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by the Hungarian National Research, Development and Innovation (NKFI) Fund OKTA K81530 and OTKA PD112584. Réka Lukács was supported by the Bolyai János Research Fellowship and the Campus Hungary Fellowship (B2/4R/12728). Constructive comments by two anonymous reviewers and by Othmar Müntener as the Editor helped to improve the original version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Réka Lukács.

Additional information

Communicated by Othmar Müntener.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukács, R., Harangi, S., Bachmann, O. et al. Zircon geochronology and geochemistry to constrain the youngest eruption events and magma evolution of the Mid-Miocene ignimbrite flare-up in the Pannonian Basin, eastern central Europe. Contrib Mineral Petrol 170, 52 (2015). https://doi.org/10.1007/s00410-015-1206-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-015-1206-8

Keywords

Navigation