Log in

Reactive flow as dominant evolution process in the lowermost oceanic crust: evidence from olivine of the Pineto ophiolite (Corsica)

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Jurassic Pineto ophiolite from Corsica exposes a ~1-km-thick troctolite–olivine-gabbro sequence, interpreted to represent a lowermost sector of the gabbroic oceanic crust from a (ultra-)slow spreading system. To constrain the petrogenesis of the olivine-gabbros, minor and trace element analyses of olivine (forsterite = 84–82 mol%) were carried out. Olivine from the olivine-gabbros is depleted in incompatible trace elements (Sc, V, Ti, Y, Zr and heavy rare earth elements) with respect to olivines from associated troctolites. Depleted incompatible element compositions are also shown by olivine (forsterite = 86 mol%) from a clinopyroxene-rich troctolite. The incompatible element compositions of olivine argue against a petrogenetic process entirely driven by fractional crystallization. We propose that melts migrating through an olivine–plagioclase crystal mush chemically evolved by reaction with the existing minerals, changing in composition as it flowed upward. The melt residual from these interactions led to partial dissolution of preexisting olivine and to crystallization of clinopyroxene, generating olivine-gabbro bodies within a troctolite matrix. Reactive flow was the major evolution process active in the ~1-km crustal transect exposed at the Pineto ophiolite, producing lithological variations classically attributed to fractional crystallization processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anders E and Ebihara M (1982) Solar system abundances of the elements. Geochim Cosmochim Acta 46:2363–2380

    Article  Google Scholar 

  • Beattie P, Ford C, Russell D (1991) Partition coefficients for olivine-melt and orthopyroxene-melt systems. Contrib Mineral Petrol 109:212–224

    Article  Google Scholar 

  • Beccaluva L, Ohnenstetter D, Ohnenstetter M, Venturelli G (1977) The trace element geochemistry of corsican ophiolites. Contrib Mineral Petrol 64:11–31

    Article  Google Scholar 

  • Bédard JH (1991) Cumulate recycling and crustal evolution on the Bay of Islands ophiolite. J Geol 99:225–249

    Article  Google Scholar 

  • Bédard JH, Hebert R (1996) The lower crust of the Bay of Islands ophiolite, Canada: petrology, mineralogy and the importance of syntexis in magmatic differentiation in ophiolites and at ocean ridges. J Geophys Res 101:25105–25124

    Article  Google Scholar 

  • Bédard JH, Hebert R, Berclaz A, Varfalvy V (2000) Syntexis and the genesis of lower oceanic crust. In: Dilek Y, Moores EM, Elthon D, Nicolas A (eds) Ophiolites and oceanic crust: new insights from field studies and the OceanDrilling program, Special Paper, Geological Society of America 349, pp 105–119

  • Blackman DK, Ildefonse B, John BE, Ohara Y, Miller DJ, MacLeod CJ, Expedition 304/305 Scientists (2006) In: Proceedings of the integrated ocean drilling program, vol 304/305. Integrated Ocean Drilling Program Management International, Inc., College Station, Texas. doi:10.2204/iodp.sd.3.01.2006

  • Blackman DK, Ildefonse B, John BE et al. (2011) Drilling constraints on lithospheric accretion and evolution at Atlantis Massif, Mid-Atlantic Ridge 30°N. J Geophys Res 116:25

    Google Scholar 

  • Borghini G, Rampone E (2007) Postcumulus processes in oceanic-type olivine-rich cumulates: the role of trapped melt crystallization versus melt/rock interaction. Contrib Mineral Petrol 154:619–633

    Article  Google Scholar 

  • Collier ML, Kelemen PB (2010) The case for reactive crystallization at mid-ocean ridges. J Petrol 51:1913–1940. doi:10.1093/petrology/egq043

    Article  Google Scholar 

  • Coogan L (2007) The lower oceanic crust. In: Turekian KK, Holland KD (eds) Treatise on geochemistry, vol 3.19. Elsevier, Amsterdam, pp 1–45

    Chapter  Google Scholar 

  • Coogan LA, Saunders AD, Kempton PD, Norry MJ (2000) Evidence from oceanic gabbros for porous melt migration within a crystal mush beneath the Mid-Atlantic Ridge. Geochem Geophys Geosys 1(9). doi:10.1029/2000GC000072

  • Dick HJB, Natland J, Alt J et al (2000) A long in situ section of the lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian Ridge. Earth Planet Sci Lett 179:31–51

    Article  Google Scholar 

  • Drouin M, Godard M, Ildefonse B, Bruguier O, Garrido CJ (2009) Geochemical and petrographic evidence for magmatic impregnation in the oceanic lithosphere at Atlantis Massif, Mid-Atlantic Ridge (IODP Hole U1309D, 30°N). Chem Geol 264:71–88

    Article  Google Scholar 

  • Drouin M, Ildefonse B, Godard M (2010) A microstructural imprint of melt impregnation in slow-spread lithosphere: olivine-rich troctolites from the Atlantis Massif (Mid-Atlantic Ridge 30°N, IODP Hole U1309D). Geochem Geophys Geosyst 11:Q06003. doi:10.1029/2009GC002995

    Article  Google Scholar 

  • Durand-Delga M, Fondecave-Wallez MJ, Rossi P (2005) L’unité ophiolitique de Pineto (Corse): signification du détritisme continental dans sa couverture de flysch albo-cénomanien. C R Geosci 337:1084–1095

    Article  Google Scholar 

  • Elthon D (1987) Mineral chemistry of gabbroic rocks from the Mid-Cayman Rise spreading center. J Geophys Res 92:658–682

    Article  Google Scholar 

  • Elthon D, Stewart M, Ross K (1992) Compositional trends of minerals in oceanic cumulates. J Geophys Res 97:15189–15199

    Article  Google Scholar 

  • Gaetani GA, Watson EB (2000) Open system behavior of olivine-hosted melt inclusions. Earth Planet Sci Lett 183:27–41

    Article  Google Scholar 

  • Gao Y, Hoefs J, Hellebrand E, von der Handt A, Snow J (2007) Trace element zoning in pyroxenes from ODP Hole735B gabbros: diffusive exchange or synkinematic crystal fractionation? Contrib Mineral Petrol 153:429–442

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212

    Article  Google Scholar 

  • Grimes CB, Cheadle MJ, John BE, Reiners PW, Wooden JL (2011) Cooling rates and the depth of detachment faulting at oceanic core complexes: evidence from zircon Pb/U and (U-Th)/He ages. Geochem Geophys Geosyst 12:Q0AG01. doi:10.1029/2010GC003391

    Article  Google Scholar 

  • Grove TL, Kinzler RJ, Bryan WB (1992) Fractionation of mid-ocean ridge basalt. In: Morgan JP, Blackman DK, Sinton JM (eds) Mantle flow and melt generation at mid-ocean ridges, geophysical monograph, vol 71. American Geophysical Union, Washington, pp 281–311

    Chapter  Google Scholar 

  • Harris PG (1957) Zone refining and the origin of potassic basalts. Geochim Cosmochim Acta 12:195–208

    Article  Google Scholar 

  • Hart SR, Dunn T (1993) Experimental cpx/melt partitioning of 24 trace elements. Contrib Mineral Petrol 113:1–8

    Article  Google Scholar 

  • John BE, Foster DA, Murphy JM, Cheadle MJ, Baines AG, Fanning CM, Copeland P (2004) Determining the cooling history of in situ lower oceanic crust—Atlantis Bank, SW Indian. Ridge Earth Planet Sci Lett 222:145–160

    Article  Google Scholar 

  • Kinzler RJ, Grove TL (1993) Corrections and further discussion of the primary magmas of mid-ocean ridge basalts, 1 and 2. J Geophys Res 98:22339–22347

    Article  Google Scholar 

  • Klein EM, Langmuir CH (1987) Global correlation of ocean ridge basalt chemistry with axial depth and crustal thickness. J Geophys Res 92:8089–8115

    Article  Google Scholar 

  • Korenaga J, Kelemen PB (1997) Melt migration through the oceanic lower crust: a constraint from melt percolation modeling with finite solid diffusion. Earth Planet Sci Lett 156:1–11

    Article  Google Scholar 

  • Kvassens AJS, Grove T (2008) How partial melts of mafic lower crust affect ascending magmas at oceanic ridges. Contrib Mineral Petrol 156:49–71

    Article  Google Scholar 

  • Liang Y (2003) Kinetics of crystal–melt reaction in partially molten silicates: 1. Grain scale processes. Geochem Geophys Geosyst. doi:10.1029/2002GC000375

    Google Scholar 

  • Lissenberg CJ, Dick HJB (2008) Melt–rock reaction in the lower oceanic crust and its implications for the genesis of mid-ocean ridge basalt. Earth Planet Sci Lett 271:311–325

    Article  Google Scholar 

  • Lissenberg CJ, Howard KA, MacLeod CJ, Godard M (2013) Pervasive reactive melt migration through fast-spreading lower oceanic crust (Hess Deep, equatorial Pacific Ocean). Earth Planet Sci Lett 361:436–447

    Article  Google Scholar 

  • Marvin UB, Walker D (1985) A transient heating event in the history of a highlands troctolite from Apollo 12 Soil 12033. J Geophys Res 90:C421–C429

    Article  Google Scholar 

  • Mathez EA (1995) Magmatic metasomatism and formation of the Merensky reef, Bushveld Complex. Contrib Mineral Petrol 119:277–286

    Article  Google Scholar 

  • Matzen AK, Baker MB, Beckett JR, Stolper EM (2013) The temperature and pressure dependence of nickel partitioning between olivine and silicate melt. J Petrol 54:2521–2545

    Article  Google Scholar 

  • McBirney AR (1987) Constitutional zone refining of layered intrusions. In: Parsons I (ed) Origins of igneous layering, 196th edn. D. Reidel, Dordrecht, pp 437–452

    Chapter  Google Scholar 

  • McBirney AR, Russell WR (1987) Constitutional zone refining of magmatic intrusions. In: Structure and dynamics of partially solidified systems, NATO ASI Series, vol 125, pp 349–365

  • McDale P, Blundy JD, Wood BJ (2003) Trace element partitioning on the Tinaquillo Lherzolite. Phys Earth Planet Inter 139:129–147

    Article  Google Scholar 

  • Meyer PS, Dick HJB, Thompson G (1989) Cumulate gabbros from the Southwest Indian Ridge, 548S^78160E: implications for magmatic processes at a slow spreading ridge. Contrib Miner Petrol 103:44–63

    Article  Google Scholar 

  • Natland JH, Dick HJB (2001) Formation of the lower ocean crust and the crystallization of gabbroic cumulates at a very slowly spreading ridge. J Volcanol Geotherm Res 110:191–223

    Article  Google Scholar 

  • O’Hara MJ (1968) Are ocean floor basalts primary magma? Nature 220:683–685

    Article  Google Scholar 

  • Pfann WG (1952) Principles of zone-melting. Trans AIME 194:747–753

    Google Scholar 

  • Presnall DC, Dixon SA, Dixon JR, O’Donnell TH, Brenner NL, Schrock RL, Dycus DW (1978) Liquidus phase relations on the join diopside–forsterite–anorthite from 1 atm to 20 kbar: their bearing on the generation and crystallization of basaltic magma. Contrib Mineral Petrol 66:203–220

    Article  Google Scholar 

  • Renna MR, Tribuzio R (2011) Olivine-rich troctolites from Ligurian ophiolites (Italy): evidence for impregnation of replacive mantle conduits by MORB-type melts. J Petrol 52:1763–1790

    Article  Google Scholar 

  • Rossi P, Durand-Delga M, Caron JM, Guieu G, Conchon O, Libourel G, Loÿe-Pilot MD (1994) Carte Géologique del la France et notice explicative de la feuille “Corte”: BRGM n 1110, Orléan, France, scale 1:50000

  • Saccani E, Padoa E, Tassinari R (2000) Preliminary data on the Pineto gabbroic Massif and Nebbio basalts: progress toward the geochemical characterization of Alpine Corsica ophiolites. Ofioliti 25:75–85

    Google Scholar 

  • Sanfilippo A, Tribuzio R (2013a) Origin of olivine-rich troctolites from the oceanic lithosphere: a comparison between the Alpine Jurassic ophiolites and modern slow spreading ridges. Ofioliti 38:89–99

    Google Scholar 

  • Sanfilippo A, Tribuzio R (2013b) Building of the deepest crust at a fossil slow-spreading centre (Pineto gabbroic sequence, Alpine Jurassic ophiolites). Contrib Mineral Petrol 165:705–721

    Article  Google Scholar 

  • Sanfilippo A, Dick HJB, Ohara Y (2013) Melt-rock reaction in the mantle: mantle troctolites from the Parece Vela ancient back-arc spreading center. J Petrol 54:861–885

    Article  Google Scholar 

  • Sanfilippo A, Tribuzio R, Tiepolo M (2014) Mantle–crust interaction in the oceanic lithosphere: constraints from minor and trace elements in olivine. Geochim Cosmochim Acta 141:423–439

    Article  Google Scholar 

  • Sanfilippo A, Morishita T, Kumagai H, Nakamura K, Okino K, Hara K, Tamura A, Arai S (2015) Hybrid troctolites from Mid-Ocean ridge, inherited mantle in the lower crust. Lithos 232:124–130

    Article  Google Scholar 

  • Spandler C, O’Neill HStC (2010) Diffusion and partition coefficients of minor and trace elements in San Carlos olivine at 1300 °C with some geochemical implications. Contrib Mineral Petrol 159:791–818

    Article  Google Scholar 

  • Spandler C, O’Neill HS, Kamenetsky VS (2007) Survival times of anomalous melt inclusions from element diffusion in olivine and chromite. Nature 447:303–306

    Article  Google Scholar 

  • Suhr G, Hellebrand E, Johnson K, Brunelli D (2008) Stacked gabbro units and intervening mantle: a detailed look at a section of IODP Leg 305, Hole U1309D. Geochem Geophys Geosyst 9:Q10007. doi:10.1029/2008GC002012

    Google Scholar 

  • Sun C, Liang Y (2012) Distribution of REE between clinopyroxene and basaltic melt along a mantle adiabat: effects of major element composition, water, and temperature. Contrib Mineral Petrol 163:807–823

    Article  Google Scholar 

  • Sun C, Liang Y (2013) The importance of crystal chemistry on REE partitioning between mantle minerals (garnet, clinopyroxene, orthopyroxene and olivine) and basaltic melts. Chem Geol 358:23–36

    Article  Google Scholar 

  • Sun C, Liang Y (2014) An assessment of subsolidus re-equilibration on REE distribution among mantle minerals olivine, orthopyroxene, clinopyroxene, and garnet in peridotites. Chem Geol 372:80–91

    Article  Google Scholar 

  • Tribuzio R, Tiepolo M, Vannucci R, Bottazzi P (1999) Trace element distribution within the olivine-bearing gabbros from the Northern Apennine ophiolites (Italy): evidence for post-cumulus crystallization in MOR-type gabbroic rocks. Contrib Mineral Petrol 134:123–133

    Article  Google Scholar 

  • Tribuzio R, Tiepolo M, Vannucci R (2000) Evolution of gabbroic rocks of the Northern Apennine ophiolites (Italy): comparison with the lower oceanic crust from modern slow1099 spreading ridges. Special papers of Geological Society of America, pp 129–138

  • Welsch B, Hammer J, Hellebrand E (2014) Phosphorus zoning reveals dendritic architecture of olivine. Geology 42(10):867–870

    Article  Google Scholar 

  • Wood BJ, Blundy JD (1997) A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt. Contrib Mineral Petrol 129:166–181

    Article  Google Scholar 

  • Yang HJ, Kinzler RJ, Grove TL (1996) Experiments and models of anhydrous, basaltic olivine–plagioclase–augite saturated melts from 0001 to 10 kbar. Contrib Mineral Petrol 124:1–88

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the “Programma di Ricerca di Interesse Nazionale” of Italian “Ministero dell’Universita` e della Ricerca” (prot. 20099SWLYC). Comments by J. Bédard and an anonymous reviewer greatly improved the quality of the manuscript; T. Grove is also thanked for the editorial work. C. Sun is acknowledged for his necessary help in using the lattice strain model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Sanfilippo.

Additional information

Communicated by Timothy L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanfilippo, A., Tribuzio, R., Tiepolo, M. et al. Reactive flow as dominant evolution process in the lowermost oceanic crust: evidence from olivine of the Pineto ophiolite (Corsica). Contrib Mineral Petrol 170, 38 (2015). https://doi.org/10.1007/s00410-015-1194-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-015-1194-8

Keywords

Navigation