Log in

NMDA receptor subunits change in the prefrontal cortex of pure-opioid and multi-drug abusers: a post-mortem study

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Addiction is a chronic relapsing disorder and is one of the most important issues in the world. Changing the level of neurotransmitters and the activities of their receptors, play a major role in the pathophysiology of substance abuse disorders. It is well-established that N-methyl-d-aspartate receptors (NMDARs) play a significant role in the molecular basis of addiction. NMDAR has two obligatory GluN1 and two regionally localized GluN2 subunits. This study investigated changes in the protein level of GluN1, GluN2A, and GluN2B in the prefrontal cortex of drug abusers. The medial prefrontal cortex (mPFC), lateral prefrontal cortex (lPFC), and orbitofrontal cortex (OFC) were dissected from the brain of 101 drug addicts brains and were compared with the brains of non-addicts (N = 13). Western blotting technique was used to show the alteration in NMDAR subunits level. Data obtained using Western blotting technique showed a significant increase in the level of GluN1 and GluN2B, but not in GluN2A subunits in all the three regions (mPFC, lPFC, and OFC) of men whom suffered from addiction as compared to the appropriate controls. These findings showed a novel role for GluN1, GluN2B subunits, rather than the GluN2A subunit of NMDARs, in the pathophysiology of addiction and suggested their role in the drug-induced plasticity of NMDARs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Richard Isralowitz PAF (2016) Mental health and addiction care in the middle east. Springer International Publishing, New York

    Book  Google Scholar 

  2. Koob GF, Volkow ND (2016) Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry 3:760–773

    Article  PubMed  PubMed Central  Google Scholar 

  3. Koob GF, Le Moal M (1997) Drug abuse: hedonic homeostatic dysregulation. Science 278:52–58

    Article  CAS  PubMed  Google Scholar 

  4. Kaufman E (1976) The abuse of multiple drugs. I. Definition, classification, and extent of problem. Am J Drug Alcohol Abuse 3:279–292

    Article  CAS  PubMed  Google Scholar 

  5. Kaufman E (1977) Polydrug abuse or multidrug misuse: it’s here to stay. Br J Addict Alcohol Other Drugs 72:339–347

    Article  CAS  PubMed  Google Scholar 

  6. Meldrum BS (2000) Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 130:1007S–1015S

    Article  CAS  PubMed  Google Scholar 

  7. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK et al (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Muto T, Tsuchiya D, Morikawa K, **gami H (2007) Structures of the extracellular regions of the group II/III metabotropic glutamate receptors. Proc Natl Acad Sci USA 104:3759–3764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhuo M (2009) Plasticity of NMDA receptor NR2B subunit in memory and chronic pain. Mol Brain 2:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Glasgow NG, Siegler Retchless B, Johnson JW (2015) Molecular bases of NMDA receptor subtype-dependent properties. J Physiol 593:83–95

    Article  CAS  PubMed  Google Scholar 

  11. Kendrick SJ, Lynch DR, Pritchett DB (1996) Characterization of glutamate binding sites in receptors assembled from transfected NMDA receptor subunits. J Neurochem 67:608–616

    Article  CAS  PubMed  Google Scholar 

  12. Cozzoli DK, Goulding SP, Zhang PW, **ao B, Hu JH, Ary AW et al (2009) Binge drinking upregulates accumbens mGluR5-Homer2-PI3K signaling: functional implications for alcoholism. J Neurosci 29:8655–8668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cozzoli DK, Courson J, Wroten MG, Greentree DI, Lum EN, Campbell RR et al (2014) Binge alcohol drinking by mice requires intact group 1 metabotropic glutamate receptor signaling within the central nucleus of the amygdala. Neuropsychopharmacology 39:435–444

    Article  CAS  PubMed  Google Scholar 

  14. Liddie S, Itzhak Y (2016) Variations in the stimulus salience of cocaine reward influences drug-associated contextual memory. Addict Biol 21:242–254

    Article  CAS  PubMed  Google Scholar 

  15. Paoletti P (2011) Molecular basis of NMDA receptor functional diversity. Eur J Neurosci 33:1351–1365

    Article  PubMed  Google Scholar 

  16. Kauer JA, Malenka RC (2007) Synaptic plasticity and addiction. Nat Rev Neurosci 8:844–858

    Article  CAS  PubMed  Google Scholar 

  17. Van den Oever MC, Spijker S, Smit AB, De Vries TJ (2010) Prefrontal cortex plasticity mechanisms in drug seeking and relapse. Neurosci Biobehav Rev 35:276–284

    Article  PubMed  Google Scholar 

  18. Tzschentke TM (2000) The medial prefrontal cortex as a part of the brain reward system. Amino acids 19:211–219

    Article  CAS  PubMed  Google Scholar 

  19. Robbins TW, Ersche KD, Everitt BJ (2008) Drug addiction and the memory systems of the brain. Ann N Y Acad Sci 1141:1–21

    Article  CAS  PubMed  Google Scholar 

  20. LaLumiere RT, Kalivas PW (2008) Glutamate release in the nucleus accumbens core is necessary for heroin seeking. J Neurosci 28:3170–3177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Peters J, Kalivas PW, Quirk GJ (2009) Extinction circuits for fear and addiction overlap in prefrontal cortex. Learn Mem 16:279–288

    Article  PubMed  PubMed Central  Google Scholar 

  22. Peters J, LaLumiere RT, Kalivas PW (2008) Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats. J Neurosci 28:6046–6053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Botelho MF, Relvas JS, Abrantes M, Cunha MJ, Marques TR, Rovira E et al (2006) Brain blood flow SPET imaging in heroin abusers. Ann N Y Acad Sci 1074:466–477

    Article  CAS  PubMed  Google Scholar 

  24. Goldstein RZ, Volkow ND (2002) Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry 159:1642–1652

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kozlenkov A, Jaffe AE, Timashpolsky A, Apontes P, Rudchenko S, Barbu M et al (2017) DNA methylation profiling of human prefrontal cortex neurons in heroin users shows significant difference between genomic contexts of hyper- and hypomethylation and a younger epigenetic age. Genes 8:152–170

    Article  CAS  PubMed Central  Google Scholar 

  26. Christie MJ, Summers RJ, Stephenson JA, Cook CJ, Beart PM (1987) Excitatory amino acid projections to the nucleus accumbens septi in the rat: a retrograde transport study utilizing D[3H]aspartate and [3H]GABA. Neuroscience 22:425–439

    Article  CAS  PubMed  Google Scholar 

  27. Kelley AE, Domesick VB, Nauta WJ (1982) The amygdalostriatal projection in the rat—an anatomical study by anterograde and retrograde tracing methods. Neuroscience 7:615–630

    Article  CAS  PubMed  Google Scholar 

  28. Everitt BJ, Morris KA, O’Brien A, Robbins TW (1991) The basolateral amygdala-ventral striatal system and conditioned place preference: further evidence of limbic-striatal interactions underlying reward-related processes. Neuroscience 42:1–18

    Article  CAS  PubMed  Google Scholar 

  29. Everitt BJ, Parkinson JA, Olmstead MC, Arroyo M, Robledo P, Robbins TW (1999) Associative processes in addiction and reward. The role of amygdala-ventral striatal subsystems. Ann N Y Acad Sci 877:412–438

    Article  CAS  PubMed  Google Scholar 

  30. Mayer DJ, Mao J, Holt J, Price DD (1999) Cellular mechanisms of neuropathic pain, morphine tolerance, and their interactions. Proc Natl Acad Sci USA 96:7731–7736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhu H, Brodsky M, Gorman AL, Inturrisi CE (2003) Region-specific changes in NMDA receptor mRNA induced by chronic morphine treatment are prevented by the co-administration of the competitive NMDA receptor antagonist LY274614. Brain Res Mol Brain Res 114:154–162

    Article  CAS  PubMed  Google Scholar 

  32. Mai JK, Paxinos G (2011) The human nervous system. Elsevier Science, Amsterdam

    Google Scholar 

  33. Ashabi G, Sadat-Shirazi MS, Khalifeh S, Elhampour L, Zarrindast MR (2017) NMDA receptor adjusted co-administration of ecstasy and cannabinoid receptor-1 agonist in the amygdala via stimulation of BDNF/Trk-B/CREB pathway in adult male rats. Brain Res Bull 130:221–230

    Article  CAS  PubMed  Google Scholar 

  34. Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35:217–238

    Article  PubMed  Google Scholar 

  35. Fein G, Di Sclafani V, Meyerhoff DJ (2002) Prefrontal cortical volume reduction associated with frontal cortex function deficit in 6-week abstinent crack-cocaine dependent men. Drug Alcohol Depend 68:87–93

    Article  PubMed  PubMed Central  Google Scholar 

  36. Peters J, De Vries TJ (2012) Glutamate mechanisms underlying opiate memories. Cold Spring Harbor Perspect Med 2:a012088

    Article  CAS  Google Scholar 

  37. Bishop SF, Lauzon NM, Bechard M, Gholizadeh S, Laviolette SR (2011) NMDA receptor hypofunction in the prelimbic cortex increases sensitivity to the rewarding properties of opiates via dopaminergic and amygdalar substrates. Cereb Cortex 21:68–80

    Article  PubMed  Google Scholar 

  38. Koob GF, Arends MA, Moal ML (2014) Drugs, addiction. Elsevier Science, Amsterdam

    Google Scholar 

  39. Bobula B, Hess G (2009) Effects of morphine and methadone treatments on glutamatergic transmission in rat frontal cortex. Pharmacol Rep 61:1192–1197

    Article  CAS  PubMed  Google Scholar 

  40. Zhu H, Jang CG, Ma T, Oh S, Rockhold RW, Ho IK (1999) Region specific expression of NMDA receptor NR1 subunit mRNA in hypothalamus and pons following chronic morphine treatment. Eur J Pharmacol 365:47–54

    Article  CAS  PubMed  Google Scholar 

  41. Bajo M, Crawford EF, Roberto M, Madamba SG, Siggins GR (2006) Chronic morphine treatment alters expression of N-methyl-d-aspartate receptor subunits in the extended amygdala. J Neurosci Res 83:532–537

    Article  CAS  PubMed  Google Scholar 

  42. Kozela E, Popik P (2007) A complete analysis of NMDA receptor subunits in periaqueductal grey and ventromedial medulla of morphine tolerant mice. Drug Alcohol Depend 86:290–293

    Article  CAS  PubMed  Google Scholar 

  43. Herrold AA, Persons AL, Napier TC (2013) Cellular distribution of AMPA receptor subunits and mGlu5 following acute and repeated administration of morphine or methamphetamine. J Neurochem 126:503–517

    Article  CAS  PubMed  Google Scholar 

  44. Anglin MD, Burke C, Perrochet B, Stamper E, Dawud-Noursi S (2000) History of the methamphetamine problem. J Psychoact drugs 32:137–141

    Article  CAS  Google Scholar 

  45. Cisneros IE, Ghorpade A (2014) Methamphetamine and HIV-1-induced neurotoxicity: role of trace amine associated receptor 1 cAMP signaling in astrocytes. Neuropharmacology 85:499–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Crocker CE, Purdon SE, Hanstock CC, Lakusta B, Seres P, Tibbo PG (2017) Enduring changes in brain metabolites and executive functioning in abstinent cocaine users. Drug and alcohol dependence 178:435–442

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the grant support of the legal medicine research center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad-Reza Zarrindast.

Ethics declarations

Conflict of interest

Authors have no conflict of interest to declare.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daneshparvar, H., Sadat-Shirazi, MS., Fekri, M. et al. NMDA receptor subunits change in the prefrontal cortex of pure-opioid and multi-drug abusers: a post-mortem study. Eur Arch Psychiatry Clin Neurosci 269, 309–315 (2019). https://doi.org/10.1007/s00406-018-0900-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-018-0900-8

Keywords

Navigation