Log in

Auditory brainstem response in unilateral tinnitus patients: does symmetrical hearing thresholds and within-subject comparison affect responses?

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Objective

In recent studies, cochlear synaptopathy has been suggested as a potential pathophysiology mechanism for tinnitus, which occurs in individuals with normal hearing thresholds. Auditory Brainstem Response (ABR) is a noninvasive method frequently used in the literature to evaluate cochlear synaptopathy in tinnitus patients. However, possible factors such as high-frequency pure-tone hearing thresholds, age, gender, and head characteristics that may affect ABR were not considered sufficiently in previous studies. Therefore, the present study aims to evaluate tinnitus ears and non-tinnitus ears with ABR in unilateral chronic tinnitus patients with symmetrical hearing.

Methods

Twenty unilateral chronic tinnitus patients having normal pure-tone average with symmetrical hearing thresholds was included in the study. Subjects were evaluated with 0.25–16 kHz pure-tone audiometry, Tinnitus Handicap Inventory (THI) and ABR were administered. All ears were evaluated monaurally using click stimuli at 80 dB nHL, alternating polarity (21.1 rate/s, 2000 sweeps).

Results

Wave I amplitude of the ABR and the ratio of III/I, V/I, and V/III wave amplitudes from tinnitus ears was higher than non-tinnitus ears. At the same time, there was a positive correlation between THI and V–I and V–III interpeak latency range, and a negative correlation between V/III wave amplitude ratio.

Conclusion

ABR can be used as an evaluation method to provide evidence that the neural organizations of individuals with chronic tinnitus differ in certain regions in their auditory pathways. The correlation between THI and ABR findings suggests that there may be a connection between tinnitus distress and the neural organization of the auditory system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Axelsson A, Ringdahl A (1989) Tinnitus—a study of its prevalence and characteristics. Br J Audiol 23(1):53–62

    Article  CAS  PubMed  Google Scholar 

  2. Xu X et al (2011) An epidemiologic study of tinnitus in a population in Jiangsu Province, China. J Am Acad Audiol 22(9):578–585

    Article  PubMed  Google Scholar 

  3. Park SY et al (2017) Comparison of tinnitus and psychological aspects between the younger and older adult patients with tinnitus. Auris Nasus Larynx 44(2):147–151

    Article  PubMed  Google Scholar 

  4. Sanchez TG et al (2005) Tinnitus in normally hearing patients: clinical aspects and repercussions. Braz J Otorhinolaryngol 71(4):427–431

    Article  PubMed  Google Scholar 

  5. Savastano M (2008) Tinnitus with or without hearing loss: are its characteristics different? Eur Arch Otorhinolaryngol 265(11):1295–1300

    Article  PubMed  Google Scholar 

  6. Liberman MC, Kujawa SG (2017) Cochlear synaptopathy in acquired sensorineural hearing loss: manifestations and mechanisms. Hear Res 349:138–147

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29(45):14077–14085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Valero M et al (2017) Noise-induced cochlear synaptopathy in rhesus monkeys (Macaca mulatta). Hear Res 353:213–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liberman MC et al (2016) Toward a differential diagnosis of hidden hearing loss in humans. PLoS ONE 11(9):e0162726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Bharadwaj HM et al (2019) Non-invasive assays of cochlear synaptopathy–candidates and considerations. Neuroscience 407:53–66

    Article  CAS  PubMed  Google Scholar 

  11. Mehraei G et al (2016) Auditory brainstem response latency in noise as a marker of cochlear synaptopathy. J Neurosci 36(13):3755–3764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Furman AC, Kujawa SG, Liberman MC (2013) Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. J Neurophysiol 110(3):577–586

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kujawa SG, Liberman MC (2015) Synaptopathy in the noise-exposed and aging cochlea: primary neural degeneration in acquired sensorineural hearing loss. Hear Res 330:191–199

    Article  PubMed  PubMed Central  Google Scholar 

  14. Guest H et al (2017) Tinnitus with a normal audiogram: relation to noise exposure but no evidence for cochlear synaptopathy. Hear Res 344:265–274

    Article  PubMed  PubMed Central  Google Scholar 

  15. Roberts LE et al (2010) Ringing ears: the neuroscience of tinnitus. J Neurosci 30(45):14972–14979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wojtczak M, Beim JA, Oxenham AJ (2017) Weak middle-ear-muscle reflex in humans with noise-induced tinnitus and normal hearing may reflect cochlear synaptopathy. eNeuro 4(6):0363–0417

    Article  Google Scholar 

  17. Park E et al (2021) Evidence of cochlear synaptopathy and the effect of systemic steroid in acute idiopathic tinnitus with normal hearing. Otol Neurotol 42:978–984

    Article  PubMed  Google Scholar 

  18. Bramhall NF, Konrad-Martin D, McMillan GP (2018) Tinnitus and auditory perception after a history of noise exposure: relationship to auditory brainstem response measures. Ear Hear 39(5):881

    Article  PubMed  PubMed Central  Google Scholar 

  19. Han MS et al (2021) Auditory brainstem response test results in normal hearing adolescents with subjective tinnitus. Int J Pediatr Otorhinolaryngol 146:110775

    Article  PubMed  Google Scholar 

  20. Don M, Eggermont J (1978) Analysis of the click-evoked brainstem potentials in man using high-pass noise masking. J Acoust Society Am 63(4):1084–1092

    Article  CAS  Google Scholar 

  21. Guest H, Munro KJ, Plack CJ (2017) Tinnitus with a normal audiogram: role of high-frequency sensitivity and reanalysis of brainstem-response measures to avoid audiometric over-matching. Hear Res 356:116

    Article  PubMed  PubMed Central  Google Scholar 

  22. Barnea G et al (1990) Tinnitus with normal hearing sensitivity: extended high-frequency audiometry and auditory-nerve brain-stem-evoked responses. Audiol 29(1):36–45

    Article  CAS  Google Scholar 

  23. Gilles A et al (2016) Decreased speech-in-noise understanding in young adults with tinnitus. Front Neurosci 10:288

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jerger J, Hall J (1980) Effects of age and sex on auditory brainstem response. Arch Otolaryngol 106(7):387–391

    Article  CAS  PubMed  Google Scholar 

  25. Lauter JL, Loomis RL (1988) Individual differences in auditory electric responses: comparisons of between-subject and within-subject variability. II. amplitude of brainstem vertex-positive peaks. Scand Audiol 17(2):87–92

    Article  CAS  PubMed  Google Scholar 

  26. Watson DR (1996) The effects of cochlear hearing loss, age and sex on the auditory brainstem response. Audiology 35(5):246–258

    Article  CAS  PubMed  Google Scholar 

  27. Shim HJ et al (2021) Within-subject comparisons of the auditory brainstem response and uncomfortable loudness levels in ears with and without tinnitus in unilateral tinnitus subjects with normal audiograms. Otol Neurotol 42(1):10–17

    Article  PubMed  Google Scholar 

  28. Aksoy S, Firat Y, Alpar R (2007) The tinnitus handicap inventory: a study of validity and reliability. Int Tinnitus J 13(2):94–98

    PubMed  Google Scholar 

  29. Newman CW, Jacobson GP, Spitzer JB (1996) Development of the tinnitus handicap inventory. Arch Otolaryngol Head Neck Surg 122(2):143–148

    Article  CAS  PubMed  Google Scholar 

  30. Kehrle HM et al (2016) Tinnitus annoyance in normal-hearing individuals: correlation with depression and anxiety. Ann Otol Rhinol Laryngol 125(3):185–194

    Article  PubMed  Google Scholar 

  31. Nemati S et al (2014) Cochlear and brainstem audiologic findings in normal hearing tinnitus subjects in comparison with non-tinnitus control group. Acta Med Iran 52(11):822–826

    PubMed  Google Scholar 

  32. Schaette R, McAlpine D (2011) Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J Neurosci 31(38):13452–13457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Le Prell CG et al (2003) Disruption of lateral efferent pathways: functional changes in auditory evoked responses. J Assoc Res Otolaryngol 4(2):276–290

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sahley TL, Nodar RH (2001) A biochemical model of peripheral tinnitus. Hear Res 152(1–2):43–54

    Article  CAS  PubMed  Google Scholar 

  35. Møller AR, Jannetta PJ (1981) Compound action potentials recorded intracranially from the auditory nerve in man. Exp Neurol 74(3):862–874

    Article  PubMed  Google Scholar 

  36. Moore JK (1987) The human auditory brain stem as a generator of auditory evoked potentials. Hear Res 29(1):33–43

    Article  CAS  PubMed  Google Scholar 

  37. Brozoski TJ, Bauer CA, Caspary DM (2002) Elevated fusiform cell activity in the dorsal cochlear nucleus of chinchillas with psychophysical evidence of tinnitus. J Neurosci 22(6):2383–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gu J et al (2012) Brainstem auditory evoked potentials suggest a role for the ventral cochlear nucleus in tinnitus. J Assoc Res Otolaryngol 13:819–833

    Article  PubMed  PubMed Central  Google Scholar 

  39. Boettcher FA, Salvi RJ (1993) Functional changes in the ventral cochlear nucleus following acute acoustic overstimulation. J Acoust Soc Am 94(4):2123–2134

    Article  CAS  PubMed  Google Scholar 

  40. Kaltenbach JA et al (2004) Activity in the dorsal cochlear nucleus of hamsters previously tested for tinnitus following intense tone exposure. Neurosci Lett 355(1–2):121–125

    Article  CAS  PubMed  Google Scholar 

  41. Engineer ND et al (2011) Reversing pathological neural activity using targeted plasticity. Nature 470(7332):101–104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Delb W et al (2008) Alterations in event related potentials (erp) associated with tinnitus distress and attention. Appl Psychophysiol Biofeedback 33(4):211–221

    Article  PubMed  Google Scholar 

Download references

Funding

This study did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eser Sendesen.

Ethics declarations

Conflict of interest

There are no conflicts of interest, financial, or otherwise.

Ethical approval

Ethical approval for this study was obtained from Non-Interventional Clinical Research Ethics Committee (GO21/522) and completed in conformity with the standards set by the Declaration of Helsinki.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sendesen, E., Kaynakoglu, B., Veziroglu, L.B. et al. Auditory brainstem response in unilateral tinnitus patients: does symmetrical hearing thresholds and within-subject comparison affect responses?. Eur Arch Otorhinolaryngol 279, 4687–4693 (2022). https://doi.org/10.1007/s00405-021-07232-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-021-07232-3

Keywords

Navigation