Log in

Tissue sampling is non-inferior in comparison to sonication in orthopedic revision surgery

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Background

The aim of this study was to assess the role of sonication fluid cultures in detecting musculoskeletal infections in orthopedic revision surgery in patients suspected of having peri-prosthetic joint infection (PJI), fracture-related infections (FRI), or postoperative spinal implant infections (PSII).

Methods

Between 2016 and 2019, 149 cases with a data set including sonication fluid cultures and tissue specimen and histological analysis were included. Accuracy of each diagnostic tool as well as the influence of antibiotic therapy was analyzed. Pathogens identified in the sonication cultures and in the associated tissue samples were compared based on the matching of the antibiograms. Therapeutic benefits were then assessed.

Results

Of 149 cases, 43.6% (n = 65) were identified as PJI, 2.7% (n = 4) as FRI, 12.8% (n = 19) as PSII, 6.7% (n = 10) as aseptic non-union, and 34.2% (n = 51) as aseptic implant loosening. The sensitivity and specificity of tissue and synovial specimens showed no significant difference with respect to sonication fluid cultures (sensitivity/specificity: tissue: 68.2%/96.7%; sonication fluid cultures: 60.2%/98.4%). The administration of antibiotics over 14 days prior to microbiological sampling (n = 40) resulted in a lower sensitivity of 42.9% each. Histological analysis showed a sensitivity 86.3% and specificity of 97.4%. In 83.9% (n = 125) of the cases, the results of sonication fluid cultures and tissue specimens were identical. Different microorganisms were found in only four cases. In 17 cases, tissue samples (n = 5) or sonication (n = 12) were false-negatives.

Conclusion

Sonication fluid culture showed no additional benefit compared to conventional microbiological diagnostics of tissue and synovial fluid cultures. Preoperative administration of antibiotics had a clearly negative effect on microbiologic test accuracy. In over 83.9% of the cases, sonication fluid and tissue cultures showed identical results. In the other cases, sonication fluid culture did not further contribute to the therapy decision, whereas other factors, such as fistulas, cell counts, or histological analysis, were decisive in determining therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Klug A, Gramlich Y, Rudert M, Drees P, Hoffmann R, Weißenberger M, Kutzner KP (2020) The projected volume of primary and revision total knee arthroplasty will place an immense burden on future health care systems over the next 30 years. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-020-06154-7

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lenguerrand E, Whitehouse MR, Beswick AD, Kunutsor SK, Burston B, Porter M, Blom AW (2018) Risk factors associated with revision for prosthetic joint infection after hip replacement: a prospective observational cohort study. Lancet Infect Dis 18(9):1004–1014. https://doi.org/10.1016/s1473-3099(18)30345-1

    Article  PubMed  PubMed Central  Google Scholar 

  3. Parker B, Petrou S, Masters JPM, Achana F, Costa ML (2018) Economic outcomes associated with deep surgical site infection in patients with an open fracture of the lower limb. Bone Joint J 100-b(11):1506–1510. https://doi.org/10.1302/0301-620x.100b11.Bjj-2018-0308.R1

    Article  CAS  PubMed  Google Scholar 

  4. Kurtz S, Ong K, Lau E, Mowat F, Halpern M (2007) Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 89(4):780–785. https://doi.org/10.2106/JBJS.F.00222

    Article  PubMed  Google Scholar 

  5. Premkumar A, Kolin DA, Farley KX, Wilson JM, McLawhorn AS, Cross MB, Sculco PK (2021) Projected economic burden of periprosthetic joint infection of the hip and knee in the United States. J Arthroplasty 36(5):1484-1489.e1483. https://doi.org/10.1016/j.arth.2020.12.005

    Article  PubMed  Google Scholar 

  6. Kurtz SM, Lau E, Watson H, Schmier JK, Parvizi J (2012) Economic burden of periprosthetic joint infection in the United States. J Arthroplasty 27(8 Suppl):61-65.e61. https://doi.org/10.1016/j.arth.2012.02.022

    Article  PubMed  Google Scholar 

  7. Depypere M, Morgenstern M, Kuehl R, Senneville E, Moriarty TF, Obremskey WT, Zimmerli W, Trampuz A, Lagrou K, Metsemakers WJ (2020) Pathogenesis and management of fracture-related infection. Clin Microbiol Infect 26(5):572–578. https://doi.org/10.1016/j.cmi.2019.08.006

    Article  CAS  PubMed  Google Scholar 

  8. Metsemakers WJ, Kuehl R, Moriarty TF, Richards RG, Verhofstad MHJ, Borens O, Kates S, Morgenstern M (2018) Infection after fracture fixation: current surgical and microbiological concepts. Injury 49(3):511–522. https://doi.org/10.1016/j.injury.2016.09.019

    Article  CAS  PubMed  Google Scholar 

  9. Bürger J, Palmowski Y, Pumberger M (2020) Comprehensive treatment algorithm of postoperative spinal implant infection. J Spine Surg 6(4):793–799. https://doi.org/10.21037/jss-20-497

    Article  PubMed  PubMed Central  Google Scholar 

  10. Schömig F, Gogia J, Caridi J (2020) Epidemiology of postoperative spinal implant infections. J Spine Surg 6(4):762–764. https://doi.org/10.21037/jss-20-498

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pumberger M, Chiu YL, Ma Y, Girardi FP, Mazumdar M, Memtsoudis SG (2012) National in-hospital morbidity and mortality trends after lumbar fusion surgery between 1998 and 2008. J Bone Joint Surg Br 94(3):359–364. https://doi.org/10.1302/0301-620x.94b3.27825

    Article  CAS  PubMed  Google Scholar 

  12. Natsuhara KM, Shelton TJ, Meehan JP, Lum ZC (2019) Mortality during total hip periprosthetic joint infection. J Arthroplasty 34(7s):S337-s342. https://doi.org/10.1016/j.arth.2018.12.024

    Article  PubMed  Google Scholar 

  13. Lum ZC, Natsuhara KM, Shelton TJ, Giordani M, Pereira GC, Meehan JP (2018) Mortality during total knee periprosthetic joint infection. J Arthroplasty 33(12):3783–3788. https://doi.org/10.1016/j.arth.2018.08.021

    Article  PubMed  Google Scholar 

  14. Bezstarosti H, Van Lieshout EMM, Voskamp LW, Kortram K, Obremskey W, McNally MA, Metsemakers WJ, Verhofstad MHJ (2019) Insights into treatment and outcome of fracture-related infection: a systematic literature review. Arch Orthop Trauma Surg 139(1):61–72. https://doi.org/10.1007/s00402-018-3048-0

    Article  CAS  PubMed  Google Scholar 

  15. Parvizi J, Tan TL, Goswami K, Higuera C, Della Valle C, Chen AF, Shohat N (2018) The 2018 definition of periprosthetic hip and knee infection: an evidence-based and validated criteria. J Arthroplasty 33(5):1309-1314.e1302. https://doi.org/10.1016/j.arth.2018.02.078

    Article  PubMed  Google Scholar 

  16. McNally M, Sousa R, Wouthuyzen-Bakker M, Chen AF, Soriano A, Vogely HC, Clauss M, Higuera CA, Trebše R (2021) The EBJIS definition of periprosthetic joint infection. Bone Joint J 103-b(1):18–25. https://doi.org/10.1302/0301-620x.103b1.Bjj-2020-1381.R1

    Article  PubMed  PubMed Central  Google Scholar 

  17. Metsemakers WJ, Morgenstern M, McNally MA, Moriarty TF, McFadyen I, Scarborough M, Athanasou NA, Ochsner PE, Kuehl R, Raschke M, Borens O, **e Z, Velkes S, Hungerer S, Kates SL, Zalavras C, Giannoudis PV, Richards RG, Verhofstad MHJ (2018) Fracture-related infection: a consensus on definition from an international expert group. Injury 49(3):505–510. https://doi.org/10.1016/j.injury.2017.08.040

    Article  CAS  PubMed  Google Scholar 

  18. Schömig F, Putzier M (2020) Clinical presentation and diagnosis of delayed postoperative spinal implant infection. J Spine Surg 6(4):772–776. https://doi.org/10.21037/jss-20-499

    Article  PubMed  PubMed Central  Google Scholar 

  19. Miller R, Higuera CA, Wu J, Klika A, Babic M, Piuzzi NS (2020) Periprosthetic joint infection: a review of antibiotic treatment. JBJS Rev 8(7):e1900224. https://doi.org/10.2106/jbjs.Rvw.19.00224

    Article  PubMed  Google Scholar 

  20. Li C, Renz N, Trampuz A, Ojeda-Thies C (2020) Twenty common errors in the diagnosis and treatment of periprosthetic joint infection. Int Orthop 44(1):3–14. https://doi.org/10.1007/s00264-019-04426-7

    Article  PubMed  Google Scholar 

  21. Hellebrekers P, Rentenaar RJ, McNally MA, Hietbrink F, Houwert RM, Leenen LPH, Govaert GAM (2019) Getting it right first time: the importance of a structured tissue sampling protocol for diagnosing fracture-related infections. Injury 50(10):1649–1655. https://doi.org/10.1016/j.injury.2019.05.014

    Article  CAS  PubMed  Google Scholar 

  22. Middleton R, Khan T, Alvand A (2019) Update on the diagnosis and management of prosthetic joint infection in hip and knee arthroplasty. Bone Joint 8(4):5–13. https://doi.org/10.1302/2048-0105.84.360701

    Article  Google Scholar 

  23. Trampuz A, Piper KE, Jacobson MJ, Hanssen AD, Unni KK, Osmon DR, Mandrekar JN, Cockerill FR, Steckelberg JM, Greenleaf JF, Patel R (2007) Sonication of removed hip and knee prostheses for diagnosis of infection. N Engl J Med 357(7):654–663. https://doi.org/10.1056/NEJMoa061588

    Article  CAS  PubMed  Google Scholar 

  24. Tunney MM, Patrick S, Gorman SP, Nixon JR, Anderson N, Davis RI, Hanna D, Ramage G (1998) Improved detection of infection in hip replacements. A currently underestimated problem. J Bone Joint Surg Br 80(4):568–572. https://doi.org/10.1302/0301-620x.80b4.8473

    Article  CAS  PubMed  Google Scholar 

  25. Dudek P, Grajek A, Kowalczewski J, Madycki G, Marczak D (2020) Ultrasound frequency of sonication applied in microbiological diagnostics has a major impact on viability of bacteria causing PJI. Int J Infect Dis 100:158–163. https://doi.org/10.1016/j.ijid.2020.08.038

    Article  CAS  PubMed  Google Scholar 

  26. Van Diek FM, Albers CGM, Van Hooff ML, Meis JF, Goosen JHM (2017) Low sensitivity of implant sonication when screening for infection in revision surgery. Acta Orthop 88(3):294–299. https://doi.org/10.1080/17453674.2017.1300021

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rothenberg AC, Wilson AE, Hayes JP, O’Malley MJ, Klatt BA (2017) Sonication of arthroplasty implants improves accuracy of periprosthetic joint infection cultures. Clin Orthop Relat Res 475(7):1827–1836. https://doi.org/10.1007/s11999-017-5315-8

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hoekstra M, Veltman ES, Nurmohamed R, van Dijk B, Rentenaar RJ, Vogely HC, van der Wal BCH (2020) Sonication leads to clinically relevant changes in treatment of periprosthetic hip or knee joint infection. J Bone Jt Infect 5(3):128–132. https://doi.org/10.7150/jbji.45006

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dudareva M, Barrett L, Figtree M, Scarborough M, Watanabe M, Newnham R, Wallis R, Oakley S, Kendrick B, Stubbs D, McNally MA, Bejon P, Atkins BA, Taylor A, Brent AJ (2018) Sonication versus tissue sampling for diagnosis of prosthetic joint and other orthopedic device-related infections. J Clin Microbiol. https://doi.org/10.1128/jcm.00688-18

    Article  PubMed  PubMed Central  Google Scholar 

  30. Goswami K, Parvizi J, Maxwell Courtney P (2018) Current recommendations for the diagnosis of acute and chronic PJI for hip and knee-cell counts, alpha-defensin, leukocyte esterase, next-generation sequencing. Curr Rev Musculoskelet Med 11(3):428–438. https://doi.org/10.1007/s12178-018-9513-0

    Article  PubMed  PubMed Central  Google Scholar 

  31. Talsma DT, Ploegmakers JJW, Jutte PC, Kam**a G, Wouthuyzen-Bakker M (2021) Time to positivity of acute and chronic periprosthetic joint infection cultures. Diagn Microbiol Infect Dis 99(1):115178. https://doi.org/10.1016/j.diagmicrobio.2020.115178

    Article  CAS  PubMed  Google Scholar 

  32. Gramlich Y, Kremer M, Bruning C, Breuer J, Hofmann L, Klug A, Hoffmann R (2021) Implementation of a standardized clinical test kit for diagnostics of periprosthetic infections in the clinical routine. Unfallchirurg. https://doi.org/10.1007/s00113-021-01016-4

    Article  PubMed  Google Scholar 

  33. Morawietz L, Classen RA, Schröder JH, Dynybil C, Perka C, Skwara A, Neidel J, Gehrke T, Frommelt L, Hansen T, Otto M, Barden B, Aigner T, Stiehl P, Schubert T, Meyer-Scholten C, König A, Ströbel P, Rader CP, Kirschner S, Lintner F, Rüther W, Bos I, Hendrich C, Kriegsmann J, Krenn V (2006) Proposal for a histopathological consensus classification of the periprosthetic interface membrane. J Clin Pathol 59(6):591–597. https://doi.org/10.1136/jcp.2005.027458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yan Q, Karau MJ, Greenwood-Quaintance KE, Mandrekar JN, Osmon DR, Abdel MP, Patel R (2018) Comparison of diagnostic accuracy of periprosthetic tissue culture in blood culture bottles to that of prosthesis sonication fluid culture for diagnosis of prosthetic joint infection (PJI) by use of bayesian latent class modeling and IDSA PJI criteria for classification. J Clin Microbiol. https://doi.org/10.1128/jcm.00319-18

    Article  PubMed  PubMed Central  Google Scholar 

  35. Prieto-Borja L, Auñón Á, Blanco A, Fernández-Roblas R, Gadea I, García-Cañete J, Parrón R, Esteban J (2018) Evaluation of the use of sonication of retrieved implants for the diagnosis of prosthetic joint infection in a routine setting. Eur J Clin Microbiol Infect Dis 37(4):715–722. https://doi.org/10.1007/s10096-017-3164-8

    Article  PubMed  Google Scholar 

  36. Parvizi J, Gehrke T (2018) Proceedings of the Second International Consensus Meeting on Musculoskeletal Infection. ISBN: 978-1-57400-157-0

  37. Bellova P, Knop-Hammad V, Königshausen M, Mempel E, Frieler S, Gessmann J, Schildhauer TA, Baecker H (2019) Sonication of retrieved implants improves sensitivity in the diagnosis of periprosthetic joint infection. BMC Musculoskelet Disord 20(1):623. https://doi.org/10.1186/s12891-019-3006-1

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zeller V, Kerroumi Y, Meyssonnier V, Heym B, Metten MA, Desplaces N, Marmor S (2018) Analysis of postoperative and hematogenous prosthetic joint-infection microbiological patterns in a large cohort. J Infect 76(4):328–334. https://doi.org/10.1016/j.**f.2017.12.016

    Article  PubMed  Google Scholar 

  39. Drago L, De Vecchi E, Bortolin M, Zagra L, Romanò CL, Cappelletti L (2017) Epidemiology and antibiotic resistance of late prosthetic knee and hip infections. J Arthroplasty 32(8):2496–2500. https://doi.org/10.1016/j.arth.2017.03.005

    Article  PubMed  Google Scholar 

  40. Padolino A, Cataldo G, Tarallo L, Fabbri E, Merolla G, Micheloni GM, Paladini P, Porcellini G (2021) Implant sonication versus intraoperative tissue sample cultures for periprosthetic joint infection (PJI) of shoulder arthroplasty. Acta Biomed 92(S3):e2021009. https://doi.org/10.23750/abm.v92iS3.11693

    Article  PubMed  PubMed Central  Google Scholar 

  41. Flurin L, Greenwood-Quaintance KE, Esper RN, Sanchez-Sotelo J, Patel R (2021) Sonication improves microbiologic diagnosis of periprosthetic elbow infection. J Shoulder Elbow Surg 30(8):1741–1749. https://doi.org/10.1016/j.jse.2021.01.023

    Article  PubMed  PubMed Central  Google Scholar 

  42. Banousi A, Evangelopoulos DS, Stylianakis A, Fandridis E, Chatziioannou S, Sipsas NV, Pneumaticos SG (2020) A comparative study of heterogeneous antibiotic resistance of microbial populations in conventional periprosthetic tissue cultures and sonication fluid cultures of orthopaedics explanted prostheses. Eur J Orthop Surg Traumatol 30(7):1307–1318. https://doi.org/10.1007/s00590-020-02704-4

    Article  PubMed  Google Scholar 

  43. Renz N, Cabric S, Morgenstern C, Schuetz MA, Trampuz A (2018) Value of PCR in sonication fluid for the diagnosis of orthopedic hardware-associated infections: has the molecular era arrived? Injury 49(4):806–811. https://doi.org/10.1016/j.injury.2018.02.018

    Article  PubMed  Google Scholar 

  44. Janz V, Wassilew GI, Kribus M, Trampuz A, Perka C (2015) Improved identification of polymicrobial infection in total knee arthroplasty through sonicate fluid cultures. Arch Orthop Trauma Surg 135(10):1453–1457. https://doi.org/10.1007/s00402-015-2317-4

    Article  CAS  PubMed  Google Scholar 

  45. Gomez E, Cazanave C, Cunningham SA, Greenwood-Quaintance KE, Steckelberg JM, Uhl JR, Hanssen AD, Karau MJ, Schmidt SM, Osmon DR, Berbari EF, Mandrekar J, Patel R (2012) Prosthetic joint infection diagnosis using broad-range PCR of biofilms dislodged from knee and hip arthroplasty surfaces using sonication. J Clin Microbiol 50(11):3501–3508. https://doi.org/10.1128/jcm.00834-12

    Article  PubMed  PubMed Central  Google Scholar 

  46. Onsea J, Depypere M, Govaert G, Kuehl R, Vandendriessche T, Morgenstern M, McNally M, Trampuz A, Metsemakers WJ (2018) Accuracy of tissue and sonication fluid sampling for the diagnosis of fracture-related infection: a systematic review and critical appraisal. J Bone Jt Infect 3(4):173–181. https://doi.org/10.7150/jbji.27840

    Article  PubMed  PubMed Central  Google Scholar 

  47. Finelli CA, da Silva CB, Murça MA, Dos Reis FB, Miki N, Fernandes HA, Dell’Aquila A, Salles MJ (2021) Microbiological diagnosis of intramedullary nailing infection: comparison of bacterial growth between tissue sampling and sonication fluid cultures. Int Orthop 45(3):565–573. https://doi.org/10.1007/s00264-020-04771-y

    Article  PubMed  Google Scholar 

  48. Bürger J, Akgün D, Strube P, Putzier M, Pumberger M (2019) Sonication of removed implants improves microbiological diagnosis of postoperative spinal infections. Eur Spine J 28(4):768–774. https://doi.org/10.1007/s00586-019-05881-x

    Article  PubMed  Google Scholar 

  49. Arciola CR, Campoccia D, Ehrlich GD, Montanaro L (2015) Biofilm-based implant infections in orthopaedics. Adv Exp Med Biol 830:29–46. https://doi.org/10.1007/978-3-319-11038-7_2

    Article  PubMed  Google Scholar 

  50. Harris AM, Bramley AM, Jain S, Arnold SR, Ampofo K, Self WH, Williams DJ, Anderson EJ, Grijalva CG, McCullers JA, Pavia AT, Wunderink RG, Edwards KM, Winchell JM, Hicks LA (2017) Influence of antibiotics on the detection of bacteria by culture-based and culture-independent diagnostic tests in patients hospitalized with community-acquired pneumonia. Open Forum Infect Dis 4(1):ofx014–ofx014. https://doi.org/10.1093/ofid/ofx014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sousa R, Carvalho A, Santos AC, Abreu MA (2021) Optimal microbiological sampling for the diagnosis of osteoarticular infection. EFORT Open Rev 6(6):390–398. https://doi.org/10.1302/2058-5241.6.210011

    Article  PubMed  PubMed Central  Google Scholar 

  52. Della Valle C, Parvizi J, Bauer TW, Dicesare PE, Evans RP, Segreti J, Spangehl M, Watters WC 3rd, Keith M, Turkelson CM, Wies JL, Sluka P, Hitchcock K (2010) Diagnosis of periprosthetic joint infections of the hip and knee. J Am Acad Orthop Surg 18(12):760–770. https://doi.org/10.5435/00124635-201012000-00006

    Article  PubMed  Google Scholar 

  53. De Vecchi E, Bortolin M, Signori V, Romanò CL, Drago L (2016) Treatment with dithiothreitol improves bacterial recovery from tissue samples in osteoarticular and joint infections. J Arthroplasty 31(12):2867–2870. https://doi.org/10.1016/j.arth.2016.05.008

    Article  PubMed  Google Scholar 

  54. Sambri A, Cadossi M, Giannini S, Pignatti G, Marcacci M, Neri MP, Maso A, Storni E, Gamberini S, Naldi S, Torri A, Zannoli S, Tassinari M, Fantini M, Bianchi G, Donati D, Sambri V (2018) Is treatment with dithiothreitol more effective than sonication for the diagnosis of prosthetic joint infection? Clin Orthop Relat Res 476(1):137–145. https://doi.org/10.1007/s11999.0000000000000060

    Article  PubMed  Google Scholar 

  55. Peel TN, Spelman T, Dylla BL, Hughes JG, Greenwood-Quaintance KE, Cheng AC, Mandrekar JN, Patel R (2017) Optimal periprosthetic tissue specimen number for diagnosis of prosthetic joint infection. J Clin Microbiol 55(1):234–243. https://doi.org/10.1128/jcm.01914-16

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Study is part of thesis of Theresa Fritsche.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or non-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Gramlich.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

Study is based on institutional review board (IRB) approval. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

According to IRB Approval and the usage of anonymized data, no informed consent was necessary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 79 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fritsche, T., Schnetz, M., Klug, A. et al. Tissue sampling is non-inferior in comparison to sonication in orthopedic revision surgery. Arch Orthop Trauma Surg 143, 2901–2911 (2023). https://doi.org/10.1007/s00402-022-04469-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-022-04469-3

Keywords

Navigation