Log in

Large amplitude oscillatory shear behavior of graphene derivative/polydimethylsiloxane nanocomposites

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Rheological properties of three different nanocomposites, consisting of graphene oxide (GO), reduced graphene oxide (rGO), and polyhedral oligomeric silsesquioxane grafted reduced graphene oxide (rGO-POSS) as nanofillers and polydimethylsiloxane (PDMS), were investigated by large amplitude oscillatory shear (LAOS). The viscoelastic nonlinearity of the three nanofluids groups was studied by Lissajous curves, local nonlinear viscoelastic moduli of an oscillatory shear cycle, and Fourier transform rheology as a function of filler concentration and increasing and decreasing strain magnitude. The nonlinear behavior of the nanofluids was compared to understand the variation of internal microstructures. Firstly, GO/PDMS composites behave with higher moduli and smaller linear viscoelastic range comparing to that of other two composites. Secondly, the elastic stress Lissajous curves of these composites changed from elliptic to rectangular with round the corner with increasing the filler level and strain amplitude. Thirdly, all these three nanofluids exhibited intra-cycle strain stiffening with increasing strains and shear thickening at intermediate strain and then shearing thinning with increasing strain further. Fourthly, higher harmonic intensity of rGO/PDMS increased with increasing strain and came to a plateau, while that of other two nanofluids reached a maximum and then decreased. It suggested that different surface functionalization of nanoparticles will present different rheological behavior due to formed different network and LAOS could be used as a potential helpful method to characterize rheological properties of nanocomposites, especially at higher shear strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdel-Goad M, Pötschke P, Zhou DH, Mark JE, Heinrich G (2007) Preparation and rheological characterization of polymer nanocomposites based on expanded graphite. J Macromol Sci Part A-Pure Appl Chem 44:591–598. https://doi.org/10.1080/10601320701284840

    Article  Google Scholar 

  • Akcora P, Kumar SK, Moll J, Lewis S, Schadler LS, Li Y, Benicewicz BC, Sandy A, Narayanan S, Illavsky J (2010) “gel-like” mechanical reinforcement in polymer nanocomposite melts. Macromolecules 43:1003–1010

    Article  Google Scholar 

  • Akcora P, Liu H, Kumar SK, Moll J, Li Y, Benicewicz BC, Schadler LS, Acehan D, Panagiotopoulos AZ, Pryamitsyn V, Ganesan V, Ilavsky J, Thiyagarajan P, Colby RH, Douglas JF (2009) Anisotropic self-assembly of spherical polymer-grafted nanoparticles. Nat Mater 8:354–359

    Article  Google Scholar 

  • Beckert F, Friedrich C, Thomann R, Mulhaupt R (2012) Sulfur-functionalized Graphenes as macro-chain-transfer and RAFT agents for producing graphene polymer brushes and polystyrene nanocomposites. Macromolecules 45:7083–7090. https://doi.org/10.1021/Ma301379z

    Article  Google Scholar 

  • Beckert F, Held A, Meier J, Mülhaupt R, Friedrich C (2014) Shear- and temperature-induced graphene network evolution in graphene/polystyrene nanocomposites and its influence on rheological, electrical, and morphological properties. Macromolecules 47:8784–8794

    Article  Google Scholar 

  • Bharadwaj NA, Ewoldt RH (2015) Single-point parallel disk correction for asymptotically nonlinear oscillatory shear. Rheol Acta 54:223–233

    Article  Google Scholar 

  • Carmona JA, Ramírez P, Calero N, Muñoz J (2014) Large amplitude oscillatory shear of xanthan gum solutions. Effect of sodium chloride (NaCl) concentration. J Food Eng 126:165–172

    Article  Google Scholar 

  • Chang H, Wu H (2013) Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications. Energy Environ Sci 6:3483–3507

    Article  Google Scholar 

  • Cho KS, Hyun K, Ahn KH, Lee SJ (2005) A geometrical interpretation of large amplitude oscillatory shear response. J Rheol 49:747–758

    Article  Google Scholar 

  • Davis WM, Macosko CW (1978) Nonlinear dynamic mechanical moduli for polycarbonate and PMMA. J Rheol 22:229–236

    Article  Google Scholar 

  • Dealy J, Larson RG (2006) Structure and rheology of molten polymers - from structure to flow behavior and back again. Hanser, Munich

    Book  Google Scholar 

  • Dealy JM, Wissbrun KF (1990) Melt rheology and its role in plastics processing. Springer, US

    Book  Google Scholar 

  • Dong Z, Wang D, Liu X, Pei X, Chen L, ** J (2014) Bio-inspired surface-functionalization of graphene oxide for the adsorption of organic dyes and heavy metal ions with a superhigh capacity. J Mater Chem A 2:5034–5040

    Article  Google Scholar 

  • Duvarci OC, Yazar G, Kokini JL (2017) The SAOS, MAOS and LAOS behavior of a concentrated suspension of tomato paste and its prediction using the bird-Carreau (SAOS) and Giesekus models (MAOS-LAOS). J Food Eng 208:77–88

    Article  Google Scholar 

  • Ewoldt RH, Hosoi AE, McKinley GH (2008) New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J Rheol 52:1427–1458

    Article  Google Scholar 

  • Ewoldt RH, Winter P, Maxey J, McKinley GH (2010) Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials. Rheol Acta 49:191–212. https://doi.org/10.1007/s00397-009-0403-7

    Article  Google Scholar 

  • Fahimi Z, Broedersz CP, van Kempen THS, Florea D, Peters GWM, Wyss HM (2014) A new approach for calculating the true stress response from large amplitude oscillatory shear (LAOS) measurements using parallel plates. Rheol Acta 53:75–83. https://doi.org/10.1007/s00397-013-0738-y

    Article  Google Scholar 

  • Fang M, Wang K, Lu H, Yang Y, Nutt S (2009) Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem 19:7098–7105

    Article  Google Scholar 

  • Fornes TD, Paul DR (2003) Modeling properties of nylon 6/clay nanocomposites using composite theories. Polymer 44:4993–5013

    Article  Google Scholar 

  • Giacomin AJ, Gilbert PH, Merger D, Wilhelm M (2015) Large-amplitude oscillatory shear: comparing parallel-disk with cone-plate flow. Rheol Acta 54:263–285. https://doi.org/10.1007/s00397-014-0819-6

    Article  Google Scholar 

  • Guimont A, Beyou E, Martin G, Sonntag P, Cassagnau P (2011) Viscoelasticity of graphite oxide-based suspensions in PDMS. Macromolecules 44:3893–3900. https://doi.org/10.1021/ma200076q

    Article  Google Scholar 

  • Heymann L, Peukert S, Aksel N (2002) Investigation of the solid–liquid transition of highly concentrated suspensions in oscillatory amplitude sweeps. J Rheol 46:93–112

    Article  Google Scholar 

  • Hirata M, Gotou T, Horiuchi S, Fujiwara M, Ohba M (2004) Thin-film particles of graphite oxide 1: high-yield synthesis and flexibility of the particles. Carbon 42:2929–2937

    Google Scholar 

  • Hyun K, Baik ES, Ahn KH, Lee SJ, Sugimoto M, Koyama K (2007) Fourier-transform rheology under medium amplitude oscillatory shear for linear and branched polymer melts. J Rheol 51:1319–1342

    Article  Google Scholar 

  • Hyun K, Kim SH, Ahn KH, Lee SJ (2002) Large amplitude oscillatory shear as a way to classify the complex fluids. J Non-Newtonian Fluid Mech 107:51–65. https://doi.org/10.1016/S0377-0257(02)00141-6

    Article  Google Scholar 

  • Hyun K, Nam JG, Wilhelm M, Ahn KH, Lee SJ (2006) Large amplitude oscillatory shear behavior of PEO-PPO-PEO triblock copolymer solutions. Rheol Acta 45:239–249. https://doi.org/10.1007/s00397-005-0014-x

    Article  Google Scholar 

  • Hyun K, Wilhelm M (2009) Establishing a new mechanical nonlinear coefficient Q from FT-rheology: first investigation of entangled linear and comb polymer model systems. Macromolecules 42:411–422

    Article  Google Scholar 

  • Iqbal MZ, Abdala AA, Mittal V, Seifert S, Herring AM, Liberatore MW (2016) Processable conductive graphene/polyethylene nanocomposites: effects of graphene dispersion and polyethylene blending with oxidized polyethylene on rheology and microstructure. Polymer 98:143–155

    Article  Google Scholar 

  • Jancar J, Douglas JF, Starr FW, Kumar SK, Cassagnau P, Lesser AJ, Sternstein SS, Buehler MJ (2010) Current issues in research on structure-property relationships in polymer nanocomposites. Polymer 51:3321–3343. https://doi.org/10.1016/j.polymer.2010.04.074

    Article  Google Scholar 

  • Kallus S, Willenbacher N, Kirsch S, Distler D, Neidhöfer T, Wilhelm M, Spiess HW (2001) Characterization of polymer dispersions by Fourier transform rheology. Rheol Acta 40:552–559

    Article  Google Scholar 

  • Khandavalli S, Rothstein JP (2015) Large amplitude oscillatory shear rheology of three different shear-thickening particle dispersions. Rheol Acta:1–18

  • Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. In: Program & Abstracts of the International Symposium on Engineering Plastics. pp 6515–6530

  • Kirkwood JG, Plock RJ (1956) Non-Newtonian viscoelastic properties of rod-like macromolecules in solution. J Chem Phys 24:665–669

    Article  Google Scholar 

  • Krishnamoorti R, Giannelis EP (1997) Rheology of end-tethered polymer layered silicate nanocomposites. Macromolecules 30:4097–4102. https://doi.org/10.1021/ma960550a

    Article  Google Scholar 

  • Leblanc JL (2002) Rubber-filler interactions and rheological properties in filled compounds. Prog Polym Sci 27:627–687. https://doi.org/10.1016/S0079-6700(01)00040-5

    Article  Google Scholar 

  • Leblanc JL (2006) Fourier transform rheometry on carbon black filled polybutadiene compounds. J Appl Polym Sci 100:5102–5118

    Article  Google Scholar 

  • Leblanc JL, Furtado CRG, Leite MCAM, Visconte LLY, de Souza AMF (2010) Effect of the fiber content and plasticizer type on the rheological and mechanical properties of poly(vinyl chloride)/green coconut fiber composites. J Appl Polym Sci 106:3653–3665. https://doi.org/10.1002/app.26567

    Article  Google Scholar 

  • Li C, Adamcik J, Mezzenga R (2012a) Biodegradable nanocomposites of amyloid fibrils and graphene with shape-memory and enzyme-sensing properties. Nat Nanotechnol 7:421–427

    Article  Google Scholar 

  • Li YQ, Yu T, Yang TY, Zheng LX, Liao K (2012b) Bio-inspired nacre-like composite films based on graphene with superior mechanical, electrical, and biocompatible properties. Adv Mater 24:3426–3431. https://doi.org/10.1002/adma.201200452

    Article  Google Scholar 

  • Li YZ, Guan YQ, Liu Y, Yin JB, Zhao XP (2016) Highly stable nanofluid based on polyhedral oligomeric silsesquioxane-decorated graphene oxide nanosheets and its enhanced electro-responsive behavior. Nanotechnology 27:1–11

    Google Scholar 

  • Lim HT, Ahn KH, Hong JS, Hyun K (2013) Nonlinear viscoelasticity of polymer nanocomposites under large amplitude oscillatory shear flow. J Rheol 57:767–789

    Article  Google Scholar 

  • Ma TT, Yang RQ, Zheng Z, Song YH (2017) Rheology of fumed silica/polydimethylsiloxane suspensions. J Rheol 61:205–215. https://doi.org/10.1122/1.4973974

    Article  Google Scholar 

  • Melito HS, Daubert CR, Foegeding EA (2012) Validation of a large amplitude oscillatory shear protocol. J Food Eng 113:124–135

    Article  Google Scholar 

  • Merger D, Wilhelm M (2014) Intrinsic nonlinearity from LAOStrain—experiments on various strain- and stress-controlled rheometers: a quantitative comparison. Rheol Acta 53:621–634. https://doi.org/10.1007/s00397-014-0781-3

    Article  Google Scholar 

  • Münstedt H, Katsikis N, Kaschta J (2008) Rheological properties of poly(methyl methacrylate)/Nanoclay composites as investigated by creep recovery in shear. Macromolecules 41:9777–9783

    Article  Google Scholar 

  • Namvari M, Du L, Stadler FJ (2017) Graphene oxide-based silsesquioxane-crosslinked networks - synthesis and rheological behavior. RSC Adv 7:21531–21540. https://doi.org/10.1039/C7RA02764H

    Article  Google Scholar 

  • Namvari M, Namazi H (2014) Synthesis of magnetic citric-acid-functionalized graphene oxide and its application in the removal of methylene blue from contaminated water. Polym Int 63:1881–1888. https://doi.org/10.1002/pi.4769

    Article  Google Scholar 

  • Namvari M, Namazi H (2015) Preparation of efficient magnetic biosorbents by clicking carbohydrates onto graphene oxide. J Mater Sci 50:5348–5361. https://doi.org/10.1007/s10853-015-9082-1

    Article  Google Scholar 

  • Namvari M, Namazi H (2016) Magnetic sweet graphene nanosheets: preparation, characterization and application in removal of methylene blue. Int J Environ Sci Technol 13:599–606. https://doi.org/10.1007/s13762-015-0885-z

    Article  Google Scholar 

  • Ng TSK, Mckinley GH, Ewoldt RH (2011) Large amplitude oscillatory shear flow of gluten dough: a model power-law gel. J Rheol 55:627–654

    Article  Google Scholar 

  • Niu R, Gong J, Xu DH, Tang T, Sun ZY (2014) Influence of molecular weight of polymer matrix on the structure and rheological properties of graphene oxide/polydimethylsiloxane composites. Polymer 55:5445–5453. https://doi.org/10.1016/j.polymer.2014.08.056

    Article  Google Scholar 

  • Papon A, Merabia S, Guy L, Lequeux F, Montes H, Sotta P, Long DR (2012) Unique nonlinear behavior of Nano-filled elastomers: from the onset of strain softening to large amplitude shear deformations. Macromolecules 45:2891–2904. https://doi.org/10.1021/ma202278e

    Article  Google Scholar 

  • Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204

    Article  Google Scholar 

  • Paul E (1969) Non-Newtonian viscoelastic properties of Rodlike molecules in solution: comment on a paper by Kirkwood and Plock. J Chem Phys 51:1271–1272

    Article  Google Scholar 

  • Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50:3210–3228

    Article  Google Scholar 

  • Ramesha GK, Vijaya Kumara A, Muralidhara HB, Sampath S (2011) Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J Colloid Interface Sci 361:270–277

    Article  Google Scholar 

  • Rittigstein P, Priestley RD, Broadbelt LJ, Torkelson JM (2007) Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nat Mater 6:278–282

    Article  Google Scholar 

  • Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36:638–670

    Article  Google Scholar 

  • Sim HG, Ahn KH, Lee SJ (2003) Large amplitude oscillatory shear behavior of complex fluids investigated by a network model: a guideline for classification. J Non-Newtonian Fluid Mech 112:237–250

    Article  Google Scholar 

  • Song SQ, Zhai YH, Zhang Y (2016) Bioinspired graphene oxide/polymer nanocomposite paper with high strength, toughness, and dielectric constant. ACS Appl Mater Interfaces 8:31264–31272. https://doi.org/10.1021/acsami.6b08606

    Article  Google Scholar 

  • Soskey PR, Winter HH (1984) Large step shear strain experiments with parallel-disk rotational rheometers. J Rheol 28:625–645

    Article  Google Scholar 

  • Sugimoto M, Suzuki Y, Hyun K, Hyun Ahn K, Ushioda T, Nishioka A, Taniguchi T, Koyama K (2006) Melt rheology of long-chain-branched polypropylenes. Rheol Acta 46:33–44. https://doi.org/10.1007/s00397-005-0065-z

    Article  Google Scholar 

  • Sun W, Yang Y, Wang T, Liu X, Wang C, Tong Z (2011) Large amplitude oscillatory shear rheology for nonlinear viscoelasticity in hectorite suspensions containing poly(ethylene glycol). Polymer 52:1402–1409

    Article  Google Scholar 

  • Terzopoulou Z, Kyzas G, Bikiaris D (2015) Recent advances in nanocomposite materials of graphene derivatives with polysaccharides. Materials 8:652–683

    Article  Google Scholar 

  • Wilhelm M, Maring D, Spiess HW (1998) Fourier-transform rheology. Rheol Acta 37:399–405. https://doi.org/10.1007/s003970050126

    Article  Google Scholar 

  • Xue Y, Liu Y, Lu F, Qu J, Chen H, Dai L (2012) Functionalization of graphene oxide with polyhedral oligomeric Silsesquioxane (POSS) for multifunctional applications. J Phys Chem Lett 3:1607–1612. https://doi.org/10.1021/jz3005877

    Article  Google Scholar 

  • Xue Y, Wang H, Yu D, Feng L, Dai L, Wang X, Lin T (2009) Superhydrophobic electrospun POSS-PMMA copolymer fibres with highly ordered nanofibrillar and surface structures. Chem Commun:6418–6420. https://doi.org/10.1039/B911509A

  • Xue Y, Wang H, Zhao Y, Dai L, Feng L, Wang X, Lin T (2010) Magnetic liquid marbles: a “precise” miniature reactor. Adv Mater 22:4814–4818. https://doi.org/10.1002/adma.201001898

    Article  Google Scholar 

  • Yadav SK, Mahapatra SS, Yoo HJ, Cho JW (2011) Synthesis of multi-walled carbon nanotube/polyhedral oligomeric silsesquioxane nanohybrid by utilizing click chemistry. Nanoscale Res Lett 6:122–122. https://doi.org/10.1186/1556-276X-6-122

    Article  Google Scholar 

  • Yu W, Wang J, You W (2016) Structure and linear viscoelasticity of polymer nanocomposites with agglomerated particles. Polymer 98:190–200. https://doi.org/10.1016/j.polymer.2016.06.028

    Article  Google Scholar 

  • Zhang X, Ciesielski A, Richard F, Chen P, Prasetyanto EA, De Cola L, Samorì P (2016) Modular graphene-based 3D covalent networks: functional architectures for energy applications. Small 12:1044–1052. https://doi.org/10.1002/smll.201503677

    Article  Google Scholar 

  • Zhou D, Cheng QY, Cui Y, Wang T, Li X, Han BH (2014) Graphene–terpyridine complex hybrid porous material for carbon dioxide adsorption. Carbon 66:592–598. https://doi.org/10.1016/j.carbon.2013.09.043

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Science Foundation of China (21574086), Nanshan District Key Lab for Biopolymers and Safety Evaluation (No. KC2014ZDZJ0001A), Shenzhen Sci & Tech research grant (ZDSYS201507141105130), and Shenzhen City Science and Technology Plan Project (JCYJ20140509172719311) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian J. Stadler.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2868 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, L., Namvari, M. & Stadler, F.J. Large amplitude oscillatory shear behavior of graphene derivative/polydimethylsiloxane nanocomposites. Rheol Acta 57, 429–443 (2018). https://doi.org/10.1007/s00397-018-1087-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-018-1087-7

Keywords

Navigation