Log in

Comparative study of thermal stability and thermal degradation kinetics of poly(vinyl ethers) with different side groups

  • Research
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

This study focused on the thermal stability and the thermal degradation kinetics of two poly(vinyl ethers), PVEs, with different side groups. The objective was to determine how the nature of the side group affects the thermal properties of these materials. Poly(2–Phthalimide Ethyl Vinyl Ether), PPEVE, was derived via zirconocene–mediated cationic homopolymerization, and poly(2–Amino Ethyl Vinyl Ether), PAEVE, was obtained by hydrazinolysis of PPEVE. The thermal stability was investigated by employing thermogravimetric analysis (TGA) and differential thermogravimetry, DTG, at six different heating rates. The thermal decomposition kinetics data were evaluated using the Ozawa–Flynn–Wall, OFW, and Kissinger–Akahira–Sunose, KAS, “model-free” methods to calculate the activation energies, \(Ea\), and subsequently the appropriate mathematical model or mechanism to describe the thermal decomposition process for each individual homopolymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Van Krevelen DW, Te Nijenhuis K (2009) Part I: General introduction: a bird’s-eye view of polymer science and engineering, Editor(s): D.W. Van Krevelen, K. Te Nijenhuis, Properties of Polymers (Fourth Edition), Elsevier, pp 3–67

  2. Reyntjens GSW, Grothals EJ (2001) New materials from poly(vinyl ethers). Polym Adv Technol 12:107–122

    Article  CAS  Google Scholar 

  3. Pielichowski J, Pielichowski K (1995) Application of thermal analysis for the investigation of polymer degradation processes. J Therm Anal 43:505–508

    Article  CAS  Google Scholar 

  4. Joseph PV, Joseph K, Thomas S, Pillai CKS, Prasad VS, Groeninckx G, Sarkissova M (2003) The thermal and crystallization studies of short sisal fibre reinforced polypropylene composites. Compos A 34:253–266

    Article  Google Scholar 

  5. Saba N, Jawaid M, Alothman OY, Paridah MT (2016) A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr Build Mater 106:149–159

    Article  CAS  Google Scholar 

  6. Zouganelis S, Choinopoulos I, Goulas I, Pitsikalis M (2019) Statistical copolymers of n-butyl vinyl ether and 2-chloroethyl vinyl ether via metallocene-mediated cationic polymerization. A Scaffold for the Synthesis of Graft Copolymers. Polymers 11:1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Plachouras NV, Pitsikalis M (2023) Statistical copolymers of N–vinylpyrrolidone and 2–chloroethyl vinyl ether via radical RAFT polymerization: monomer reactivity ratios, thermal properties, and kinetics of thermal decomposition of the statistical copolymers. Polymers 15(8):1970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Beyler CL, Hirschler MM (2002) Thermal decomposition of polymers. SFPE Handbook of Fire Protection Engineering 2, Section 1, Chapter 7, 111–131

  9. Minoda M, Sawamoto M, Higashimura T (1987) Block copolymers of 2-hydroxyethyl vinyl ether and alkyl vinyl ether by living cationic polymerization: new nonionic macromolecular amphiphiles. Macromolecules 20:2045–2049

    Article  CAS  Google Scholar 

  10. Hashimoto T, Ibuki H, Sawamoto M, Higashimura T (1988) Living cationic polymerization of 2-vinyloxyethyl phthalimide: synthesis of poly(vinyl ether) with pendant primary amino functions. J Polym Sci Part A: Polym Chem 26:3361–3374

    Article  CAS  Google Scholar 

  11. Lee N, Ju S, Cho W, Kim S, Kang K, Thomas B, Emmanuel AT (2003) Synthesis and antitumour activity of medium molecular weight phthalimide polymers of camptothecin. Polym Int 52:1339–1345

    Article  CAS  Google Scholar 

  12. **n H, Guo X, Kimm FS, Ren G, Watson MD, Jenekhe SA (2009) Efficient solar cells based on a new phthalimide-based donor–acceptor copolymer semiconductor: morphology, charge-transport, and photovoltaic properties. J Mater Chem 19:5303–5310

    Article  CAS  Google Scholar 

  13. Konstantinova TN, Grabchev IK (1997) On the copolymerization of styrene and acrylonitrile with 1,8-naphthalimide derivatives (optical brightening agents). Polym Int 43:39–44

    Article  CAS  Google Scholar 

  14. Guiver M, Robertson G, Foley S (1995) Chemical modification of polysulfones. 2. An efficient method for introducing primary amine groups onto the aromatic chain. Macromolecules 28:7612–7621

    Article  CAS  Google Scholar 

  15. Meier-Haack J, Lenk W, Lehmann D, Lunkwitz K (2001) Pervaporation separation of water/alcohol mixtures using composite membranes based on polyelectrolyte multilayer assemblies. J Membr Sci 184:233–243

    Article  CAS  Google Scholar 

  16. Horn D (1980) In polymeric amines and ammonium salts ed. by Goethals EJ, Pergamon Press UK, Oxford, pp 333–355

  17. Patel DM, Shekh MI, Patel KP, Patel RM (2015) Synthesis, characterization and antimicrobial activity of novel acrylic materials. J Chem Pharm Res 7:470–480

    CAS  Google Scholar 

  18. Angermund K, Fink G, Jensen VR, Kleinschmidt R (2000) Toward quantitative prediction of stereospecificity of metallocene-based catalysts for α-olefin polymerization. Chem Rev 100:1457–1470

    Article  CAS  PubMed  Google Scholar 

  19. Chen EYX (2009) Coordination polymerization of polar vinyl monomers by single-site metal catalysts. Chem Rev 109:5157–5214

    Article  CAS  PubMed  Google Scholar 

  20. Kostakis K, Mourmouris S, Karanikolopoulos G, Pitsikalis M, Hadjichristidis N (2007) Ring-opening polymerization of lactones using zirconocene catalytic systems: block copolymerization with methyl methacrylate. J Polym Sci A 45:3524–3537

    Article  CAS  Google Scholar 

  21. Nakayama Y, Watanabe K, Ueyama N, Nakamura A, Harada A, Okuda J (2000) Titanium complexes having chelating diaryloxo ligands bridged by tellurium and their catalytic behavior in the polymerization of ethylene. Organometallics 19:2498–2503

    Article  CAS  Google Scholar 

  22. Luo Y, Baldamus J, Hou Z (2004) Scandium half–metallocene–catalyzed syndiospecific styrene polymerization and styrene–ethylene copolymerization: unprecedented incorporation of syndiotactic styrene–styrene sequences in styrene–ethylene copolymers. J Am Chem Soc 126:13910–13911

    Article  CAS  PubMed  Google Scholar 

  23. Barsan F, Karam AR, Parent MA, Baird MC (1998) Polymerization of isobutylene and the copolymerization of isobutylene and isoprene initiated by the metallocene derived Cp*TiMe2(µ-Me)B(C6F5)3. Macromolecules 31:8439–8447

    Article  CAS  Google Scholar 

  24. Kourti ME, Vougioukalakis GC, Hadjichristidis N, Pitsikalis M (2011) Metallocene-mediated cationic ring-opening polymerization of 2-methyl- and 2-phenyl oxazoline. J Polym Sci Part A Polym Chem 49:2520–2527

    Article  CAS  Google Scholar 

  25. Kourti ME, Fega E, Pitsikalis M (2016) Block copolymers based on 2-methyl- and 2-phenyl oxazoline by metallocene-mediated cationic ring-opening polymerization. Synthesis and characterization. Polym Chem 7:2821–2835

    Article  CAS  Google Scholar 

  26. Kourti ME, Foteinogiannopoulou G, Fega E, Pitsikalis M (2015) Statistical copolymers of 2-methyl- and 2-phenyl oxazoline by metallocene-mediated cationic ring-opening polymerization: Synthesis, reactivity ratios, kinetics of thermal decomposition. J Macromol Sci Part. A 52:630–642

    Article  CAS  Google Scholar 

  27. Batagianni E, Marathianos A, Koraki A, Maroudas AP, Pitsikalis M (2016) Metallocene-mediated cationic polymerization of vinyl ethers: kinetics of polymerization and synthesis and characterization of statistical copolymers. J Macromol Sci Part A 53:140–151

    Article  CAS  Google Scholar 

  28. Mantzara D, Katara A, Panteli M, Stavrakaki IG, Plachouras NV, Choinopoulos I, Pitsikalis M (2024) Synthesis and characterization of statistical and block copolymers of n-hexyl isocyanate and 2-chloroethyl isocyanate via coordination polymerization. J Polym Sci 62:2484–2502

    Article  CAS  Google Scholar 

  29. Kanaoka S, Minoda M, Sawamoto M, Higashimura T (1990) Amphiphilic block copolymers of vinyl ethers by living cationic polymerization. II. Synthesis and surface activity of macromolecular amphiphiles with pendant amino groups. J Polym Sci 28(A):1127–1136

    Article  CAS  Google Scholar 

  30. Oda Y, Kanaoka S, Aoshima S (2010) Synthesis of dual pH/temperature-responsive polymers with amino groups by living cationic polymerization. J Polym Sci Part A: Polym Chem 48:1207–1213

    Article  CAS  Google Scholar 

  31. Van der Velde P, Goethals EJ, Du Prez F (2003) New approach for the synthesis of amino-containing linear polymers. Polym Int 52:1589–1594

    Article  Google Scholar 

  32. Khawam A, Flanagan DR (2006) Basics and applications of solid-state kinetics: a pharmaceutical perspective. J Pharm Scie 95(3):472–498

    Article  CAS  Google Scholar 

  33. Khawam A, Flanagan DR (2005) Role of isoconversional methods in varying activation energies of solid-state kinetics: I. Isothermal Kinetic Studies. Thermochim Acta 429(1):93–101

    Article  CAS  Google Scholar 

  34. Khawam A, Flanagan DR (2005) Role of isoconversional methods in varying activation energies of solid-state kinetics: II. Nonisothermal kinetic studies. Thermochim Acta 436(1–2):101–112

    Article  CAS  Google Scholar 

  35. Galukhin A, Liavitskaya T, Vyazovkin S (2019) Kinetic and mechanistic insights into thermally initiated polymerization of cyanate esters with different bridging groups. Macromol Chem Phys 220:1900141

    Article  Google Scholar 

  36. Boulkadid MK, Touid**e S, Trache D, Belkhiri S (2022) Analytical methods for the assessment of curing kinetics of polyurethane binders for high energy composites. Crit Rev Anal Chem 5:1112–1121

    Article  Google Scholar 

  37. Tarchoun AF, Trache D, Klapötke TM, Chelouche S, Derradji M, Bessa W, Mezroua A (2019) A promising energetic polymer from Posidonia oceanica brown alge: synthesis, characterization, and kinetic modeling. Macromol Chem Phys 220:1900358

    Article  CAS  Google Scholar 

  38. Liqing L, Donghua C (2004) Application of iso-temperature method of multiple rate to kinetic analysis. Dehydration for calcium oxalate monohydrate. J Therm Anal Calorim 78:283–293

    Article  CAS  Google Scholar 

  39. Lim ACR, Chin BLF, Jawad ZA, Hii KL (2016) Kinetic analysis of rice husk pyrolysis using Kissinger-Akahira-Sunose (KAS) method. Procedia Engin 148:1247–1251

    Article  CAS  Google Scholar 

  40. Hayoune F, Chelouche S, Trache D, Zitouni S, Grohens Y (2020) Thermal decomposition kinetics and lifetime prediction of a PP/PLA blend supplemented with iron stearate during artificial aging. Thermochim Acta 690:178700

    Article  CAS  Google Scholar 

  41. Doyle CD (1961) Kinetic analysis of thermogravimetric data. J Appl Polym Sci 5:285–292

    Article  CAS  Google Scholar 

  42. Ozawa T (1965) A new method of analyzing thermogravimetric data. B Chem Soc Jpn 38(11):1881–1886

    Article  CAS  Google Scholar 

  43. Flynn JH, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Polym Lett Ed 4:323–328

    Article  CAS  Google Scholar 

  44. Ozawa T (1970) Kinetic analysis of derivative curves in thermal analysis. J Therm Anal Calorim 2(3):301–324

    Article  CAS  Google Scholar 

  45. Coates AW, Redfern J (1964) Kinetic parameters from thermogravimetric data. Nature 201:68–69

    Article  Google Scholar 

  46. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29(11):1702–1706

    Article  CAS  Google Scholar 

  47. Trache D, Abdelaziz A, Siouani B (2017) A simple and linear isoconversional method to determine the pre-exponential factors and the mathematical reaction mechanism functions. J Therm Anal Calorim 128:335–348

    Article  CAS  Google Scholar 

  48. Khawam A, Flanagan DR (2006) Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B 110:17315–17328

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Stavros Zouganelis and Kosmas Michos-Stavridis performed the synthesis, kinetics and molecular characterization of the samples. Nikolaos V. Plachouras performed the thermal analysis studies. Marinos Pitsikalis supervised this work and wrote the manuscript.

Corresponding author

Correspondence to Marinos Pitsikalis.

Ethics declarations

Ethical approval

This declaration is not applicable. No ethical issues are involved in this work.

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1183 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plachouras, N.V., Michos–Stavridis, K., Zouganelis, S. et al. Comparative study of thermal stability and thermal degradation kinetics of poly(vinyl ethers) with different side groups. Colloid Polym Sci (2024). https://doi.org/10.1007/s00396-024-05284-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00396-024-05284-5

Keywords

Navigation