Log in

Preparation and evaluation of w/o/w-type emulsions for encapsulation of citronella essential oil by inverse ionic gelation

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Citronella (Cymbopogon winterianus) essential oil (EO) has a significant commercial interest. Encapsulation is crucial to maintaining EO characteristics and stability. Herein, the impact of different emulsions on the encapsulation of citronella EO by inverse ionic gelation is evaluated. The variables studied include the concentration of CaCl2 (4–12%), the addition of corn starch (0.5%) to the emulsion, and the concentration of sodium alginate solution (0.5% and 1%) in the gelling solution. Emulsions and capsules were characterized through several techniques. Complex water/oil/water (w/o/w) emulsion showed stability for only 5 min after formation. Emulsions with different concentrations of CaCl2 showed no difference in viscosity, but there was a significant effect in the alginate bath. Six proposed formulations formed intact capsules. Adding Tween 80 to the alginate bath reduced the surface tension, producing more spherical capsules. Corn starch impacted the crosslinking of the alginate with CaCl2, resulting in thicker layers with fewer cracks.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Simões CMO, Schenkel EP, Gosmann G, Mello JD, Mentz LA, Petrovick PR (2007) Farmacognosia da planta ao medicamento. 5ª edição. Porto Alegre, RS: Editora UFSC

  2. Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils–a review. Food Chem Toxicol 46(2):446–475

    Article  CAS  PubMed  Google Scholar 

  3. El Asbahani A, Miladi K, Badri W, Sala M, Addi EA, Casabianca H, Elaissari A (2015) Essential oils: from extraction to encapsulation. Int J Pharm 483(1–2):220–243

    Article  CAS  PubMed  Google Scholar 

  4. Abd Manaf M, Mustapa AN, Mustapa K (2013) Supercritical fluid extraction of citronella oil from Cymbopogon nardus and its optimization. In: IEEE Bus Eng Ind Appl Colloq (BEIAC) 73–78. IEEE

  5. Sharma R, Rao R, Kumar S, Mahant S, Khatkar S (2019) Therapeutic potential of citronella essential oil: a review. Curr Drug Discov Technol 16(4):330–339

    Article  CAS  PubMed  Google Scholar 

  6. Sousa VI, Parente JF, Marques JF, Forte MA, Tavares CJ (2022) Microencapsulation of Essential Oils: A Review. Polymers 14(9):1730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Benavides S, Cortés P, Parada J, Franco W (2016) Development of alginate microspheres containing thyme essential oil using ionic gelation. Food Chem 204:77–83

    Article  CAS  PubMed  Google Scholar 

  8. Bonda AF, Regis L, Giovannelli L, Segale L (2020) Alginate/maltodextrin and alginate/shellac gum core-shell capsules for the encapsulation of peppermint essential oil. Int J Biol Macromol 162:1293–1302

    Article  Google Scholar 

  9. Anwar SH, Weissbrodt J, Kunz B (2010) Microencapsulation of fish oil by spray granulation and fluid bed film coating. J Food Sci 75(6):E359–E371

    Article  CAS  PubMed  Google Scholar 

  10. Devi N, Maji TK (2009) A novel microencapsulation of neem (Azadirachta Indica A. Juss.) seed oil (NSO) in polyelectrolyte complex of κ-carrageenan and chitosan. J Appl Polym Sci 113(3):1576–1583

    Article  CAS  Google Scholar 

  11. Quispe-Condori S, Saldaña MD, Temelli F (2011) Microencapsulation of flax oil with zein using spray and freeze drying. LWT-Food Sci Technol 44(9):1880–1887

    Article  CAS  Google Scholar 

  12. Sánchez-Navarro MM, Cuesta-Garrote N, Arán-Aís F, Orgilés-Barceló C (2011) Microencapsulation of Melaleuca alternifolia (tea tree) oil as biocide for footwear applications. J Dispersion Sci Technol 32(12):1722–1727

    Article  Google Scholar 

  13. Almeida AP, Rodríguez-Rojo S, Serra AT, Vila-Real H, Simplicio AL, Delgadilho I, Duarte CM (2013) Microencapsulation of oregano essential oil in starch-based materials using supercritical fluid technology. Innov Food Sci Emerg Technol 20:140–145

    Article  CAS  Google Scholar 

  14. Botrel DA, de Barros Fernandes RV, Borges SV, Yoshida MI (2014) Influence of wall matrix systems on the properties of spray-dried microparticles containing fish oil. Food Res Int 62:344–352

    Article  CAS  Google Scholar 

  15. Liu K, Xu Y, Wang X (2012) Microencapsulation of sweet orange oil terpeneless using the orifice method. J Food Eng 110(3):390–394

    Article  CAS  Google Scholar 

  16. Soliman EA, El-Moghazy AY, El-Din MM, Massoud MA (2013) Microencapsulation of essential oils within alginate: formulation and in vitro evaluation of antifungal activity. J Encapsulation Adsorp Sci 3:48–55

    Article  Google Scholar 

  17. Sutaphanit P, Chitprasert P (2014) Optimisation of microencapsulation of holy basil essential oil in gelatin by response surface methodology. Food Chem 150:313–320

    Article  CAS  PubMed  Google Scholar 

  18. Wang B, Adhikari B, Barrow CJ (2014) Optimisation of the microencapsulation of tuna oil in gelatin–sodium hexametaphosphate using complex coacervation. Food Chem 158:358–365

    Article  CAS  PubMed  Google Scholar 

  19. Leong JY, Lam WH, Ho KW, Voo WP, Lee MFX, Lim HP, Chan ES (2016) Advances in fabricating spherical alginate hydrogels with controlled particle designs by ionotropic gelation as encapsulation systems. Particuology 24:44–60

    Article  CAS  Google Scholar 

  20. Bakry AM, Abbas S, Ali B, Majeed H, Abouelwafa MY, Mousa A, Liang L (2016) Microencapsulation of oils: a comprehensive review of benefits, techniques, and applications. Compr Rev Food Sci Food Saf 15(1):143–182

    Article  CAS  PubMed  Google Scholar 

  21. Smrdel P, Bogataj M, Zega A, Planinšek O, Mrhar A (2008) Shape optimization and characterization of polysaccharide beads prepared by ionotropic gelation. J Microencapsul 25(2):90–105

    Article  CAS  PubMed  Google Scholar 

  22. Martins E, Renard D, Davy J, Marquis M, Poncelet D (2015) Oil core microcapsules by inverse gelation technique. J Microencapsul 32(1):86–95

    Article  CAS  PubMed  Google Scholar 

  23. Andersen PO, Gåseröd O, Larsen CK (2011) U.S. Patent No. 7,972,620. Washington, DC: U.S. Patent and Trademark Office

  24. Abang S, Chan ES, Poncelet D (2012) Effects of process variables on the encapsulation of oil in ca-alginate capsules using an inverse gelation technique. J Microencapsul 29(5):417–428

    Article  CAS  PubMed  Google Scholar 

  25. Dautzenberg H, Hartmann J, Grunewald S, Brand F (1996) Stoichiometry and structure of polyelectrolyte complex particles in diluted solutions. Ber Bunsenges Phys Chem 100(6):1024–1032

    Article  CAS  Google Scholar 

  26. Neumann MG, Schmitt CC, Iamazaki ET (2003) A fluorescence study of the interactions between sodium alginate and surfactants. Carbohyd Res 338(10):1109–1113

    Article  CAS  Google Scholar 

  27. Yang J, Zhao J, Fang Y (2008) Calorimetric studies of the interaction between sodium alginate and sodium dodecyl sulfate in dilute solutions at different pH values. Carbohyd Res 343(4):719–725

    Article  CAS  Google Scholar 

  28. Córdoba AL, Deladino L, Martino M (2013) Effect of starch filler on calcium-alginate hydrogels loaded with yerba mate antioxidants. Carbohyd Polym 95(1):315–323

    Article  Google Scholar 

  29. Nayak AK, Pal D, Das S (2013) Calcium pectinate-fenugreek seed mucilage mucoadhesive beads for controlled delivery of metformin HCl. Carbohyd Polym 96(1):349–357

    Article  CAS  Google Scholar 

  30. Rinaudo M (2008) Main properties and current applications of some polysaccharides as biomaterials. Polym Int 57(3):397–430

    Article  CAS  Google Scholar 

  31. Ouwerx C, Velings N, Mestdagh MM, Axelos MA (1998) Physico-chemical properties and rheology of alginate gel beads formed with various divalent cations. Polym Gels Netw 6(5):393–408

    Article  CAS  Google Scholar 

  32. Pongjanyakul T, Puttipipatkhachorn S (2007) Xanthan–alginate composite gel beads: molecular interaction and in vitro characterization. Int J Pharm 331(1):61–71

    Article  CAS  PubMed  Google Scholar 

  33. Züge LCB, Haminiuk CWI, Maciel GM, Silveira JLM, de Paula Scheer A (2013) Catastrophic inversion and rheological behavior in soy lecithin and Tween 80 based food emulsions. J Food Eng 116(1):72–77

    Article  Google Scholar 

  34. Cui S, Liu C, Wang Z, Zhang X, Strandman S, Tenhu H (2004) Single molecule force spectroscopy on polyelectrolytes: effect of spacer on adhesion force and linear charge density on rigidity. Macromol 37(3):946–953

    Article  CAS  Google Scholar 

  35. McClements DJ (2004) Food emulsions: principles, practices, and techniques. CRC Press

    Book  Google Scholar 

  36. Llop JC (1998) Tecnología farmacéutica. Volumen I: Aspectos fundamentales de los sistemas farmacéuticos y operaciones básicas. José Luis Vila Jato (ed). Int Microbiol 1(1):78

  37. Tadros T (2004) Application of rheology for assessment and prediction of the long-term physical stability of emulsions. Adv Coll Interface Sci 108:227–258

    Article  Google Scholar 

  38. Rabinovich-Guilatt L, Couvreur P, Lambert G, Goldstein D, Benita S, Dubernet C (2004) Extensive surface studies help to analyse zeta potential data: the case of cationic emulsions. Chem Phys Lipid 131(1):1–13

    Article  CAS  Google Scholar 

  39. Tadros TF (1996) Correlation of viscoelastic properties of stable and flocculated suspensions with their interparticle interactions. Adv Coll Interface Sci 68:97–200

    Article  CAS  Google Scholar 

  40. Tadros TF (2011) Rheology of dispersions: principles and applications. John Wiley & Sons

    Google Scholar 

  41. Patel AV, Pusch I, Mix-Wagner G, Vorlop KD (2000) A novel encapsulation technique for the production of artificial seeds. Plant Cell Rep 19(9):868–874

    Article  CAS  PubMed  Google Scholar 

  42. Chan ES, Lee BB, Ravindra P, Poncelet D (2009) Prediction models for shape and size of ca-alginate macrobeads produced through extrusion–drip** method. J Colloid Interface Sci 338(1):63–72

    Article  CAS  PubMed  Google Scholar 

  43. Martins E, Poncelet D, Marquis M, Davy J, Renard D (2017) Monodisperse core-shell alginate (micro)-capsules with oil core generated from droplets millifluidic. Food Hydrocoll 63:447–456

    Article  CAS  Google Scholar 

  44. Fingas M, Fieldhouse B (2003) Studies of the formation process of water-in-oil emulsions. Mar Pollut Bull 47(9–12):369–396

    Article  CAS  PubMed  Google Scholar 

  45. Masmoudi H, Le Dréau Y, Piccerelle P, Kister J (2005) The evaluation of cosmetic and pharmaceutical emulsions aging process using classical techniques and a new method: FTIR. Int J Pharm 289(1–2):117–131

    Article  CAS  PubMed  Google Scholar 

  46. Almeida RN, Navarro DS, Barbosa-Filho JM (2001) Plants with central analgesic activity. Phytomedicine 8(4):310–322

    Article  CAS  PubMed  Google Scholar 

  47. Hunter RJ (2013) Zeta potential in colloid science: principles and applications (Vol. 2). Academic press

  48. Han M, Zhao J, Fabian JM, Mustafa S, Ruan Y, Wiederman S, Ebendorff-Heidepriem H (2020) Intracellular delivery of nanoparticles via microelectrophoresis technique: feasibility demonstration. bioRxiv

  49. Mora-Huertas CE, Fessi H, Elaissari A (2010) Polymer-based nanocapsules for drug delivery. Int J Pharm 385(1–2):113–142

    Article  CAS  PubMed  Google Scholar 

  50. Vargas PO, Pereira NR, Guimarães AO, Waldman WR, Pereira VR (2018) Shrinkage and deformation during convective drying of calcium alginate. Lwt 97:213–222

    Article  CAS  Google Scholar 

  51. Blandino A, Macias M, Cantero D (2001) Immobilization of glucose oxidase within calcium alginate gel capsules. Process Biochem 36(7):601–606

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Multiuser Center for Materials Characterization (CMCM), LabReo, and the Multiuser Laboratory of Environmental Analysis (LAMEAA) at the Federal University of Technology–Parana (UTFPR) for their facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Benegra.

Ethics declarations

Conflict of interest

The authors declare no conflicting interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benegra, M., Couto, G.H. & Pagnoncelli, M.G.B. Preparation and evaluation of w/o/w-type emulsions for encapsulation of citronella essential oil by inverse ionic gelation. Colloid Polym Sci 301, 1159–1170 (2023). https://doi.org/10.1007/s00396-023-05134-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-023-05134-w

Keywords

Navigation