Log in

Self-assembly in newly synthesized dual-responsive double hydrophilic block copolymers (DHBCs) in aqueous solution

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Double hydrophilic diblock copolymers (DHBCs) with a zwitterionic block of poly[2-(methacryloyloxyethyl phosphorylcholine)] (PMPC) having degree of polymerization (DP) (n = 25) and other as thermo/pH-responsive poly[2-(dimethylaminoethyl methacrylate)] (PDMAEMA) block with DP (n = 24 and 48) abbreviated as PMPC25-b-PDMAEMAn were synthesized using reversible addition-fragmentation chain transfer (RAFT). The influence of the DP of the PDMAEMA block in both the DHBCs in different environments like pH, temperature, and salt concentration was studied exhaustively using proton nuclear magnetic resonance spectroscopy (1H-NMR) and gel-permeation chromatography (GPC). Additionally, the molecular interaction between the blocks was predicted from the optimized descriptors using a computational simulation framework. The self-assembly leading to successive micellization is examined from scattering techniques in the applied stimuli environment. The micellization was favored in alkaline pH and in the presence of salt, particularly for the DHBC with a high DP.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 3

Similar content being viewed by others

References

  1. Varvara C, Stergios P (2018) Stimuli-responsive amphiphilic PDMAEMA-b-PLMA copolymers and their cationic and zwitterionic analogs. Polym Sci A Polym Chem 56(6):598–610. https://doi.org/10.1002/pola.28931

    Article  CAS  Google Scholar 

  2. Cyrille B, Nathaniel Alan C, Kenward J, Diep N, Thuy-Khanh N, Nik NM, A, Susan O, Sivaprakash S, Jonathan Y (2016) Copper-mediated living radical polymerization (atom transfer radical polymerization and copper (0) mediated polymerization): from fundamentals to bioapplications. Chem Rev 116(4):1803–1949. https://doi.org/10.1021/acs.chemrev.5b00396

    Article  CAS  Google Scholar 

  3. Aguilar R, Elvira C, Gallardo A, Vazquez B, Román J (2007)Smart polymers and their applications as biomaterials, Biomaterials. SPAIN 3(6) 1–27 chapter-6. https://www.researchgate.net/publication/228365910

  4. Eun Seok G, Samuel MH (2004) Stimuli-reponsive polymers and their bioconjugates Prog Polym Sci 29(12)1173–1222

  5. Vitaliy VK, Theoni KG (2018) Temperature-responsive polymers: chemistry, properties, and applications, John Wiley & Sons, U.K. https://doi.org/10.1002/9781119157830

  6. Stephanie G, Mohamed E, El-Sayed H (2010) Stimuli-sensitive particles for drug delivery. Nat Rev Drug Discov 171–190 chapter-7. https://doi.org/10.1142/97898142956800008

  7. Jiao B, Mingzu Z, **lin H, Peihong N (2013) Preparation and self-assembly of double hydrophilic poly (ethylethylene phosphate)-block-poly [2-(succinyloxy) ethyl methacrylate] diblock copolymers for drug delivery. React Funct Polym 73(3):579–587. https://doi.org/10.1016/j.reactfunctpolym.2012.12.010

    Article  CAS  Google Scholar 

  8. Ren J (2011) Biodegradable poly (lactic acid): synthesis, modification, processing and applications Springer Science and Business Media New York 978-3-642-17595-4

  9. Khimani M, Yusa S, Nagae A, Enomoto R, Aswal V, Kesselman E, DaninoD BP (2015) Self-assembly of multi-responsive poly (N-isopropylacrylamide)-b-poly (N, N-dimethylaminopropylacrylamide) in aqueous media. Springer Science and Business Media 69:96–109. https://doi.org/10.1016/j.eurpolymj.2015.05.027

    Article  CAS  Google Scholar 

  10. Agut W, Brûlet A, Schatz C, Taton D, Lecommandoux S (2010) pH and temperature responsive polymeric micelles and polymersomes by self-assembly of poly [2-(dimethylamino) ethyl methacrylate]-b-poly (glutamic acid) double hydrophilic block copolymers. Langmuir 26(13):10546–10554. https://doi.org/10.1021/la1005693

    Article  CAS  PubMed  Google Scholar 

  11. Kumar S, Parikh K (2012) Influence of temperature and salt on association and thermodynamic parameters of micellization of a cationic gemini surfactant. J Appl Sol 1(1):65–73. E-ISSN:1929–5030/12

  12. Kumar S, Sharma D, Kabir-ud-Din (2003) Temperature-[salt] compensation for clouding in ionic micellar systems containing sodium dodecyl sulfate and symmetrical quaternary bromides. Langmuir 19(8):3539–3541. https://doi.org/10.1021/la026783e

    Article  CAS  Google Scholar 

  13. Zhang Z, Moxey M, Alswieleh A, Morse J, Lewis L, Geoghegan M, Leggett J (2016) Effect of salt on phosphorylcholine-based zwitterionic polymer brushes. Langmuir 32(20):5048–5057. https://doi.org/10.1021/acs.langmuir.6b00763

    Article  CAS  PubMed  Google Scholar 

  14. Saha P, Palanisamy R, Santi M, Ganguly R, Mondal S, Singha K, Pich A (2021) Thermoresponsive zwitterionic poly (phosphobetaine) microgels: effect of macro-RAFT chain length and cross-linker molecular weight on their antifouling properties. Polym Adv Technol 32(7):2710–2726. https://doi.org/10.1002/pat.5214

    Article  CAS  Google Scholar 

  15. Goda T, Ishihara K, Miyahara Y (2015) Critical update on 2‐methacryloyloxyethyl phosphorylcholine (MPC) polymer science. J Appl Polym Sci 132(16). https://doi.org/10.1002/app.41766

  16. Hong L, Zhang Z, Zhang Y, Zhang W (2014) Synthesis and self-assembly of stimuli-responsive amphiphilic block copolymers based on polyhedral oligomeric silsesquioxane. J Polym Sci A Polym Chem 52(18):2669–2683. https://doi.org/10.1002/pola.27287

    Article  CAS  Google Scholar 

  17. Lewis A, Tang Y, Brocchini S, Choi W, Godwin A (2008) Poly (2-methacryloyloxyethyl phosphorylcholine) for protein conjugation. Bioconjugate Chem 19(11):2144–2155. https://doi.org/10.1021/bc800242t

    Article  CAS  Google Scholar 

  18. Kuroda K, Miyoshi H, Fujii S, Hirai T, Takahara A, Nakao A, Iwasaki Y, Morigaki K, Ishihara K, Yusa SI (2015) Poly (dimethylsiloxane)(PDMS) surface patterning by biocompatible photo-crosslinking block copolymers. RSC Adv 5(58):46686–46693. https://doi.org/10.1039/C5RA08843G

    Article  CAS  Google Scholar 

  19. Bütün V, Armes P, Billingham C (2001) Synthesis and aqueous solution properties of near-monodisperse tertiary amine methacrylate homopolymers and diblock copolymers. Polym J 42(14):5993–6008. https://doi.org/10.1016/S0032-3861(01)00066-0

    Article  Google Scholar 

  20. Atanase LI, Desbrieres J, Riess G (2017) Micellization of synthetic and polysaccharides-based graft copolymers in aqueous media. Prog Polym Sci 73:32–60. https://doi.org/10.3390/polym3031065

    Article  CAS  Google Scholar 

  21. Ma Y, Lobb J, Billingham C, Armes P, Lewis L, Lloyd W, Salvage J (2002) Synthesis of biocompatible polymers. 1. Homopolymerization of 2-methacryloyloxyethyl phosphorylcholine via ATRP in protic solvents: an optimization study. Macromolecules. 35(25):9306–9314. https://doi.org/10.1021/ma0210325

  22. Plamper FA, Synatschke CV, Majewski AP, Schmalz A, Schmalz H, Müller AH (2014) Star-shaped poly [2-(dimethylamino) ethyl methacrylate] and its derivatives: toward new properties and applications. Polimery 59(1):66–73. https://doi.org/10.14314/polimery.2014.066

  23. Niskanen J, Wu C, Ostrowski M, Fuller G, Hietala S, Tenhu H (2013) Thermoresponsiveness of PDMAEMA. Electrostatic and stereochemical effects, Macromolecules 46(6):2331–2340. https://doi.org/10.1021/ma302648w

    Article  CAS  Google Scholar 

  24. Mitsukami Y, Donovan S, Lowe B, McCormick L (2001) Water-soluble polymers. 81. Direct synthesis of hydrophilic styrenic-based homopolymers and block copolymers in aqueous solution via RAFT. Macromolecules 34(7):2248–2256. https://doi.org/10.1021/ma0018087

  25. Stubbs E, Laskowski E, Conor P, Heinze A, Karis D, Glogowski M (2017) Control of pH-and temperature-responsive behavior of mPEG-b-PDMAEMA copolymers through polymer composition. J Macromol Sci A 54(4):228–235. https://doi.org/10.1080/10601325.2017.1282694

    Article  CAS  Google Scholar 

  26. Han X, Zhang X, Zhu H, Yin Q, Liu H, Hu Y (2013) Effect of composition of PDMAEMA-b-PAA block copolymers on their pH-and temperature-responsive behaviors. Langmuir 29(4):1024–1034. https://doi.org/10.1021/la3036874

    Article  CAS  PubMed  Google Scholar 

  27. Mohammadi M, Salami-Kalajahi M, Roghani-Mamaqani H, Golshan M (2017) Effect of molecular weight and polymer concentration on the triple temperature/pH/ionic strength-sensitive behavior of poly (2-(dimethylamino) ethyl methacrylate). Int J Polym Mater 66(9):455–461. https://doi.org/10.1080/00914037.2016.1236340

    Article  CAS  Google Scholar 

  28. Plamper FA, Ruppel M, Schmalz A, Borisov O, Ballauff M, Müller AH (2007) Tuning the thermoresponsive properties of weak polyelectrolytes: aqueous solutions of star-shaped and linear poly (N, N-dimethylaminoethyl methacrylate). Macromolecules 40(23):8361–8366. https://doi.org/10.1021/ma071203b

    Article  CAS  Google Scholar 

  29. Gohy F, Antoun S, Jérôme R (2001) pH-dependent micellization of poly (2-vinylpyridine)-block-poly((dimethylamino) ethyl methacrylate) diblock copolymers. Macromolecules 34(21):7435–7440. https://doi.org/10.1021/ma010535s

    Article  CAS  Google Scholar 

  30. Manouras T, Koufakis E, Anastasiadis H, Vamvakaki M (2017) A facile route towards PDMAEMA homopolymer amphiphiles. Soft Matter 13(20):3777–3782. https://doi.org/10.1039/C7SM00365J

    Article  CAS  PubMed  Google Scholar 

  31. Zhu J, Tan B, Du X (2008) Preparation and self-assembly behavior of polystyrene-block-poly (dimethylaminoethyl methacrylate) amphiphilic block copolymer using atom transfer radical polymerization. Express Polym Lett 2(3):214–225. https://doi.org/10.3144/expresspolymlett.2008.26

    Article  CAS  Google Scholar 

  32. de Paz BV, Robinson L, Armes P (2000) Synthesis and solution properties of dimethylsiloxane-2-(dimethylamino) ethyl methacrylate block copolymers. Macromolecules 33(2):451–456. https://doi.org/10.1021/ma991665s

    Article  CAS  Google Scholar 

  33. Ni H, Pan S, Zha S, Wang C, Elaïssari A, Fu K (2002) Syntheses and characterizations of poly [2-(dimethylamino) ethyl methacrylate]-poly (propylene oxide)-poly [2-(dimethylamino) ethyl methacrylate] ABA triblock copolymers. J Polym Sci A Polym Chem 40(4):624–631. https://doi.org/10.1002/pola.10144

    Article  CAS  Google Scholar 

  34. Cabral H, Miyata K, Osada K, Kataoka K (2018) Block copolymer micelles in nanomedicine applications. Chem Rev 118(14):6844–6892. https://doi.org/10.1021/acs.chemrev.8b00199

    Article  CAS  PubMed  Google Scholar 

  35. Bhadoria A, Kumar S, Aswal VK, Kumar S (2015) Mechanistic approach on heat induced growth of anionic surfactants: a clouding phenomenon. RSC Adv 5(30):23778–23786. https://doi.org/10.1039/C5RA01090J

    Article  CAS  Google Scholar 

  36. Zhang C, Maric M (2011) Synthesis of stimuli-responsive, water-soluble poly[2-(dimethylamino)ethyl methacrylate/styrene] Statistical Copolymers by Nitroxide Mediated Polymerization. Polymers 1398–1422. https://doi.org/10.3390/polym3031398

  37. Sharma D, Khan ZA, Aswal VK, Kumar S (2006) Clouding phenomenon and SANS studies on tetra-n-butylammonium dodecylsulfate micellar solutions in the absence and presence of salts. J Colloid Interface Sci 302(1):315–321. https://doi.org/10.1016/j.jcis.2006.06.021

    Article  CAS  PubMed  Google Scholar 

  38. NguyenL IK, Yusa SI (2022) Separated micelles formation of pH-responsive random and block copolymers containing phosphorylcholine groups. Polymers 14(3):577. https://doi.org/10.3390/polym14030577

    Article  CAS  Google Scholar 

  39. Giacomelli C, Le Men L, Borsali R, Lai-Kee-Him J, Brisson A, Armes SP, Lewis L (2006) Phosphorylcholine-based pH-responsive diblock copolymer micelles as drug delivery vehicles: light scattering, electron microscopy, and fluorescence experiments. Biomacromol 7(3):817–828. https://doi.org/10.1021/bm0508921

    Article  CAS  Google Scholar 

  40. Aswal K, Goyal S (2000) Small-angle neutron scattering diffractometer at Dhruva reactor. Curr Sci 79(7):947–953. https://www.jstor.org/stable/24104808

  41. Jangir A, Patel D, More R, Parmar A, Kuperkar K (2019) New insight into experimental and computational studies of Choline chloride-based ‘green’ternary deep eutectic solvent (TDES). Colloids Surf A Physicochem Eng Asp 1181:295–299. https://doi.org/10.1016/j.molstruc.2018.12.106

    Article  CAS  Google Scholar 

  42. Fukumoto H, Ishihara K, Yusa SI (2021) Thermo-responsive behavior of mixed aqueous solution of hydrophilic polymer with pendant phosphorylcholine group and poly (acrylic acid). Polymers 13(1):148. https://doi.org/10.3390/polym13010148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ukawa M, Akita H, Masuda T, Hayashi Y, Konno T, Ishihara K, Harashima H (2010) 2-Methacryloyloxyethyl phosphorylcholine polymer (MPC)-coating improves the transfection activity of GALA-modified lipid nanoparticles by assisting the cellular uptake and intracellular dissociation of plasmid DNA in primary hepatocytes. Biomaterials 31(24):6355–6362. https://doi.org/10.1016/j.biomaterials.2010.04.031

    Article  CAS  PubMed  Google Scholar 

  44. de Castro E, Ribeiro A, Alavarse C, Albuquerque J, da Silva C, Jäger E, Surman F, Schmidt V, Giacomelli C, Giacomelli C (2018) Nanoparticle–cell interactions: surface chemistry effects on the cellular uptake of biocompatible block copolymer assemblies. Langmuir 34(5):2180–2188. https://doi.org/10.1021/acs.langmuir.7b04040

    Article  CAS  PubMed  Google Scholar 

  45. Atanase LI, Riess G (2011) Thermal cloud point fractionation of poly (vinyl alcohol-co-vinyl acetate): partition of nanogels in the fractions. Polymers 3(3):1065–1075. https://doi.org/10.3390/polym3031065

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the scientists Dr. Vinod K. Aswal and Dr. Debes Ray, Solid State Physics Division, Bhabha Atomic Research Centre (BARC), Mumbai, Maharashtra-India for providing the neutron scattering facility and also to the Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, Gujarat-INDIA for providing the central instrumentation facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ketan Kuperkar.

Ethics declarations

Ethics approval

No human or animal subjects were used in this research.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• PMPC25-b-PDMAEMAn are dual (thermo-and pH-) responsive double hydrophilic block copolymers (DHBCs).

• PMPC25-b-PDMAEMAn (n = 24 and 48) diblock copolymers were synthesized via RAFT and the correct synthesis was confirmed from spectral study.

• Self-assembly and micellar growth of these DHBCs are examined using scattering methods as a function of the applied stimuli (temperature and pH).

• Molecular interactions in DHBCs are discussed using the evaluated optimized computational descriptors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yukioka, S., Yusa, Si., Prajapati, V. et al. Self-assembly in newly synthesized dual-responsive double hydrophilic block copolymers (DHBCs) in aqueous solution. Colloid Polym Sci 301, 417–431 (2023). https://doi.org/10.1007/s00396-023-05075-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-023-05075-4

Keywords

Navigation