Log in

Effect of hydrocarbon surfactants on the properties of 1-dodecyl-1-methylpiperidinium chloride: synthesis, micellization, thermodynamics, and surface parameters

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The mixed micellization behavior of (1-dodecyl-1-methylpiperidinium chloride) [C12mpip]Cl and hydrocarbon surfactants, sodium dodecylbenzene sulfonate (SDBS) as an anionic surfactant, cetyltrimethylammonium bromide (CTAB) as a cationic surfactant, and octylphenol ethoxylate (Titron X-100) as a non-ionic surfactant in water was investigated using dynamic light scattering (DLS), conductivity, UV spectroscopy, and surface tension measurements. In addition, critical micellar concentration (CMC), the degree of counterion binding (), and various thermodynamic parameters of micellization have been evaluated from conductivity measurements. The different interfacial properties were calculated from surface tension measurement. The experimental results of the mix system in an aqueous solution indicated that CMC values decreased with the addition of different mole fractions of surfactant in the surface active ionic liquid (SAIL) mixture. The mix system’s hydrodynamic radius was less for the higher concentration of the surfactant in the mix system, which was assessed using the DLS methodology. The micellar mole fractions (Xm), ideal CMC (CMC*), interaction parameter (βm), and activity coefficients of components (f1 and f2) in the mixed micelle were calculated using various theoretical models (Clint, Rubingh, and Motomura). The negative values of the interaction parameter (βm) suggest the synergistic effects in a mixed state. The mixed micellar parameters (CMC* and Xm) ensure the non-ideal behavior of the mixed system.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Martins MAP, Frizzo CP, Moreira DN et al (2008) Ionic liquids in heterocyclic synthesis. Chem Rev 108:2015–2050. https://doi.org/10.1021/cr078399y

    Article  PubMed  CAS  Google Scholar 

  2. Tsubone K (2003) The interaction of an anionic gemini surfactant with conventional anionic surfactants. J Colloid Interface Sci 261:524–528. https://doi.org/10.1016/S0021-9797(03)00088-2

    Article  PubMed  CAS  Google Scholar 

  3. Moud AA (2022) Rheology and microscopy analysis of polymer – surfactant complexes. Colloid Polym Sci. https://doi.org/10.1007/s00396-022-04982-2

    Article  Google Scholar 

  4. Lochhead BRY, Huisinga LR (2020) A review of polymer–surfactant interactions. handbook of surface and colloid chemistry 654–699. https://doi.org/10.1201/b18633-17

  5. Khan N, Brettmann B (2019) Intermolecular interactions in polyelectrolyte and surfactant complexes in solution. Polymers 11:1–28. https://doi.org/10.3390/polym11010051

    Article  CAS  Google Scholar 

  6. Jabbari M, Izadmanesh Y, Ghavidel H (2019) Synthesis of ionic liquids as novel emulsifier and demulsifiers. J Mol Liq. https://doi.org/10.1016/j.molliq.2019.111512

    Article  Google Scholar 

  7. Wu J, Shu Q, Niu Y et al (2018) Preparation, characterization, and antibacterial effects of chitosan nanoparticles embedded with essential oils synthesized in an ionic liquid containing system. J Agric Food Chem 66:7006–7014. https://doi.org/10.1021/acs.jafc.8b01428

    Article  PubMed  CAS  Google Scholar 

  8. Clint JH (1975) Micellization of mixed nonionic surface active agents. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 71:1327–1334. https://doi.org/10.1039/F19757101327

  9. Azum N, Asiri AM, Rub MA et al (2013) Mixed micellization of gemini surfactant with nonionic surfactant in aqueous media: a fluorometric study. Colloid J 75:235–240. https://doi.org/10.1134/S1061933X13030022

    Article  CAS  Google Scholar 

  10. Wu Z, Li Y, Li J et al (2019) Study on the properties and self-assembly of fatty alcohol ether carboxylic ester anionic surfactant and cationic surfactant in a mixed system. New J Chem 43:12494–12502. https://doi.org/10.1039/c9nj02407g

    Article  CAS  Google Scholar 

  11. Kume G, Gallotti M, Nunes G (2008) Review on anionic/cationic surfactant mixtures. J Surfactants Deterg 11:1–11. https://doi.org/10.1007/s11743-007-1047-1

    Article  CAS  Google Scholar 

  12. Banjare MK, Kurrey R, Yadav T et al (2017) A comparative study on the effect of imidazolium-based ionic liquid on self-aggregation of cationic, anionic and nonionic surfactants studied by surface tension, conductivity, fluorescence and FTIR spectroscopy. J Mol Liq 241:622–632. https://doi.org/10.1016/j.molliq.2017.06.009

    Article  CAS  Google Scholar 

  13. Javadian S, Nasiri F, Heydari A et al (2014) Modifying effect of imidazolium-based ionic liquids on surface activity and self-assembled nanostructures of sodium dodecyl sulfate. J Phys Chem B 118:4140–4150. https://doi.org/10.1021/jp5010049

    Article  PubMed  CAS  Google Scholar 

  14. Chat OA, Maswal M, Hassan PA et al (2015) Effect of mixed micellization on dimensions of 1-butyl-3-methylimidazolium dodecylsulfate micelles in presence of electrolytes. Colloids Surf, A 484:498–507. https://doi.org/10.1016/j.colsurfa.2015.08.032

    Article  CAS  Google Scholar 

  15. Kumar H, Kaur G, Priya (2020) Influence of tetra ethyl ammonium bromide (C2H5)4NBr on the aggregation behavior of surface active ionic liquid 1-tetradecyl-3-methylimidazolium bromide [C14mim][Br]. J Mol Liq 313:113431. https://doi.org/10.1016/j.molliq.2020.113431

  16. Kumar H, Kaur G (2021) Aggregation behavior of mixed micellar system of dodecyl sulfate-based surface-active ionic liquids and anionic surfactant in aqueous media. J Surfactants Deterg 24:209–227. https://doi.org/10.1002/jsde.12486

    Article  CAS  Google Scholar 

  17. Mandal B, Mondal S, Pan A et al (2015) Colloids and surfaces A : physicochemical and engineering aspects physicochemical study of the interaction of lysozyme with surface active ionic liquid 1-butyl-3-methylimidazolium octylsulfate [BMIM ] [OS ] in aqueous and buffer media. Colloids Surf, A 484:345–353. https://doi.org/10.1016/j.colsurfa.2015.07.052

    Article  CAS  Google Scholar 

  18. Pal A, Punia R, Dubey GP (2021) Formation of mixed micelles in an aqueous mixture of a biamphiphilic surface active ionic liquid and an anionic surfactant: Experimental and theoretical study. J Mol Liq 337:116355. https://doi.org/10.1016/j.molliq.2021.116355

    Article  CAS  Google Scholar 

  19. Chabba S, Kumar S, Kumar V et al (2015) Colloids and surfaces A : physicochemical and engineering aspects interfacial and aggregation behavior of aqueous mixtures of imidazolium based surface active ionic liquids and anionic surfactant sodium dodecylbenzenesulfonate. Colloids Surf, A 472:9–20. https://doi.org/10.1016/j.colsurfa.2015.02.032

    Article  CAS  Google Scholar 

  20. Ali A, Farooq U, Uzair S, Patel R (2016) Conductometric and tensiometric studies on the mixed micellar systems of surface-active ionic liquid and cationic surfactants in aqueous medium. J Mol Liq 223:589–602. https://doi.org/10.1016/j.molliq.2016.08.082

    Article  CAS  Google Scholar 

  21. Jafari-Chashmi P, Bagheri A (2018) The strong synergistic interaction between surface active ionic liquid and anionic surfactant in the mixed micelle using the spectrophotometric method. J Mol Liq 269:816–823. https://doi.org/10.1016/j.molliq.2018.08.094

    Article  CAS  Google Scholar 

  22. Carnero Ruiz C, Molina-Bolívar JA, Aguiar J et al (2001) Thermodynamic and structural studies of Triton X-100 micelles in ethylene glycol-water mixed solvents. Langmuir 17:6831–6840. https://doi.org/10.1021/la010529p

    Article  CAS  Google Scholar 

  23. Pal A, Punia R (2019) Mixed micellization behaviour of tri-substituted surface active ionic liquid and cationic surfactant in aqueous medium and salt solution: experimental and theoretical study. J Mol Liq 296:111831. https://doi.org/10.1016/j.molliq.2019.111831

    Article  CAS  Google Scholar 

  24. Némethy G, Scheraga HA (1962) Thermodynamic properties of liquid water. J Chem Phys 36:3382–3400. https://doi.org/10.1063/1.1732472

    Article  Google Scholar 

  25. Hait SK, Majhi PR, Blume A, Moulik SP (2003) A critical assessment of micellization of sodium dodecyl benzene sulfonate ( SDBS ) and its interaction with poly (vinyl pyrrolidone) and hydrophobically modified polymers, JR 400 and LM 200. J Phys Chem B 2003:3650–3658. https://doi.org/10.1021/jp027379r

    Article  CAS  Google Scholar 

  26. Shah SK, Bhattarai A (2020) Interfacial and micellization behavior of cetyltrimethylammonium bromide (CTAB) in water and methanol-water mixture at 298.15 to 323.15 K. J Chem 2020:1–13. https://doi.org/10.1155/2020/4653092

    Article  CAS  Google Scholar 

  27. Tikariha D, Ghosh KK, Barbero N et al (2011) Micellization properties of mixed cationic gemini and cationic monomeric surfactants in aqueous-ethylene glycol mixture. Colloids Surf, A 381:61–69. https://doi.org/10.1016/j.colsurfa.2011.03.027

    Article  CAS  Google Scholar 

  28. Sinha S, Tikariha D, Lakra J et al (2015) Effect of polar organic solvents on self-aggregation of some cationic monomeric and dimeric surfactants. J Surfactants Deterg 18:629–640. https://doi.org/10.1007/s11743-015-1686-6

    Article  CAS  Google Scholar 

  29. Mittal KL (1979) Solution chemistry of surfactants, Vol. I and II. (I-XI+519-:)

  30. Holland PM (1986) Solutions pseudo-phase separation approach for treating nonideal mixed. Advances in Collodal and Interface Science 26:111–129. https://doi.org/10.1016/0001-8686(86)80018-5

    Article  CAS  Google Scholar 

  31. Aratono M, Ikeguchi M, Takiue T et al (1995) Thermodynamic study on the miscibility of sodium perfluorooctanoate and sodium decyl sulfate in the adsorbed film and micelle. Journal of Colloid And Interface Science 174:156–161. https://doi.org/10.1006/jcis.1995.1377

    Article  CAS  Google Scholar 

  32. Sohrabi B, Gharibi H, Tajik B et al (2008) Molecular interactions of cationic and anionic surfactants in mixed monolayers and aggregates. J Phys Chem B 112:14869–14876. https://doi.org/10.1021/jp803105n

    Article  PubMed  CAS  Google Scholar 

  33. Maeda H (1995) A simple thermodynamic analysis of the stability of ionic/nonionic mixed micelles. Journal of colloidal and interface science 172:98–105. https://doi.org/10.1006/jcis.1995.1230

    Article  CAS  Google Scholar 

  34. Itoh H, Ishido S, Nomura M et al (1996) Estimation of the hydrophobicity in microenvironments by pyrene fluorescence measurements: n-yβ-octylglucoside micelles. J Phys Chem 100:9047–9053. https://doi.org/10.1021/jp953682z

    Article  CAS  Google Scholar 

  35. Babu K, Pal N, Saxena VK, Mandal A (2016) Synthesis and characterization of a new polymeric surfactant for chemical enhanced oil recovery. Korean J Chem Eng 33:711–719. https://doi.org/10.1007/s11814-015-0186-8

    Article  CAS  Google Scholar 

  36. Pillai P, Pal N, Mandal A (2017) Synthesis, characterization, surface properties and micellization behaviour of imidazolium-based ionic liquids. J Surfactants Deterg 20:1321–1335. https://doi.org/10.1007/s11743-017-2021-1

    Article  CAS  Google Scholar 

  37. Sood AK, Aggarwal M (2018) Evaluation of micellar properties of sodium dodecylbenzene sulphonate in the presence of some salts. J Chem Sci 130:1–7. https://doi.org/10.1007/s12039-018-1446-z

    Article  CAS  Google Scholar 

  38. Movchan TG, Soboleva IV, Plotnikova EV et al (2012) Dynamic light scattering study of cetyltrimethylammonium bromide aqueous solutions. Colloid J 74:239–247. https://doi.org/10.1134/S1061933X1202007X

    Article  CAS  Google Scholar 

  39. Pal A, Pillania A (2016) Thermodynamic and micellization properties of aqueous cetyltrimethylammonium bromide solution in presence of 1-butyl-2,3-dimethylimidazolium bromide. Fluid Phase Equilib 412:115–122. https://doi.org/10.1016/j.fluid.2015.12.042

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Charotar University of Science and Technology (Charusat University) for providing research facilities to carry out the research work. In addition, Nidhi Patel and Deep Sharma acknowledge the Government of Gujarat for giving the “SHODH” Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Panjabi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 379 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, N., Patel, V., Sharma, D. et al. Effect of hydrocarbon surfactants on the properties of 1-dodecyl-1-methylpiperidinium chloride: synthesis, micellization, thermodynamics, and surface parameters. Colloid Polym Sci 300, 903–916 (2022). https://doi.org/10.1007/s00396-022-04996-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-022-04996-w

Keywords

Navigation