Log in

Diimide hydrogenation of NBR latex using different zinc ions catalytic system

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The zinc ion is used as a catalyst to effectively replace the traditional copper ion catalyst to participate in the redox reaction of hydrazine hydrate and hydrogen peroxide to generate diimide to selectively hydrogenate the carbon–carbon double bonds in the nitrile butadiene rubber (NBR) latex to prepare hydrogenated NBR (HNBR). The optimized zinc ion catalytic hydrogenation system was obtained through orthogonal design experiment screening. Among them, the hydrogenation of NBR latex with zinc chloride as a catalyst can obtain HNBR-ZnCl2 products with high hydrogenation degree (90.58%), high thermal stability, and high regularity. Using zinc ions as a catalyst instead of copper ions can effectively improve the damage of copper ions remaining in the hydrogenated product on the thermal-oxidative aging resistance performance of rubber. Compared with HNBR hydrogenated by copper ions, HNBR hydrogenated by zinc ion catalysts has better thermal-oxidative aging resistance performance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Promchim J, Kanking S, Niltui P, Wimolmala E, Sombatsompop N (2016) Swelling and mechanical properties of (acrylonitrile-butadiene rubber)/(hydrogenated acrylonitrile-butadiene rubber) blends with precipitated silica filled in gasohol fuels. J Vinyl Add Tech 22:239–246

    Article  CAS  Google Scholar 

  2. Choudhury A, Bhowmick AK, Ong C, Soddemann M (2010) Influence of molecular parameters on thermal, mechanical, and dynamic mechanical properties of hydrogenated nitrile rubber and its nanocomposites. Polym Eng Sci 50:1389–1399

    Article  CAS  Google Scholar 

  3. Choudhury A, Bhowmick AK, Ong C (2009) Effect of different nanoparticles on thermal, mechanical and dynamic mechanical properties of hydrogenated nitrile butadiene rubber nanocomposites. J Appl Polym Sci 116:1428–1441

    Google Scholar 

  4. Bhattacharjee N, Bhowmick AK, Avasthi BN (1990) Hydrogenation of nitrile rubber using a new homogeneous palladium (II) catalyst: synthesis and characterization. J Appl Polym Sci 41(6):1357–1363

    Article  CAS  Google Scholar 

  5. Schulz GAS, Comin E, de Souza RF (2007) Catalytic hydrogenation of nitrile rubber using palladium and ruthenium complexes. J Appl Polym Sci 106(1):659–663

    Article  CAS  Google Scholar 

  6. Tangthongkul R, Prasassarakich P, McManus NT, Rempel GL (2004) Hydrogenation of cis-1,4-polyisoprene catalyzed by Ru(CHCH(Ph))Cl(CO)(PCy3)2. J Appl Polym Sci 91(5):3259–3273

    Article  CAS  Google Scholar 

  7. Chen J, Ma L, Cheng TT, Cai AF, Hu YD, Wu ZJ, Liu HY, Bao XJ, Yuan P (2018) Stable and recyclable Pd catalyst supported on modified silica hollow microspheres with macroporous shells for enhanced catalytic hydrogenation of NBR. J Mater Sci 53(21):15064–15080

    Article  CAS  Google Scholar 

  8. Zhang P, Zhang HW, Wang SH, Lei XQ, Yang JT, Li ZM, Zhu HB, Bao XJ, Yuan P (2020) Effect of support morphology on the activity and reusability of Pd/SiO2 for NBR hydrogenation. J Mater Sci 55(27):12876–12883

    Article  CAS  Google Scholar 

  9. Chen J, Wu ZJ, Liu HY, Bao XJ, Yuan P (2019) A Surface-cofunctionalized silica supported palladium catalyst for selective hydrogenation of nitrile butadiene rubber with enhanced catalytic activity and recycling performance. Ind Eng Chem Res 58(27):11821–11830

    Article  CAS  Google Scholar 

  10. Ge BQ, Hua YD, Zhang HW, Xu JK, Zhang P, Yue YY, Zhu HB, Lin S, Yuan P (2021) Zirconium promoter effect on catalytic activity of Pd based catalysts for heterogeneous hydrogenation of nitrile butadiene rubber. Appl Surf Sci 539:148212–148219

    Article  CAS  Google Scholar 

  11. Wideman LG (1984) Process for hydrogenation of carbon-carbon double bonds in an unsaturated polymer in latex form. US Patent 4452950

  12. Singha NK, Bhattacharjee S, Sivaram S (1997) Hydrogenation of diene elastomers, their properties and applications: a critical review. Rubber Chem Technol 70:309–367

    Article  CAS  Google Scholar 

  13. Brück D (1989) IR spectrometric determination of the proportions of acrylonitrile, butadiene and hydrogenated butadiene in hydrogenated acrylonitrile-butadiene rubbers. Part 1. Principles. KGK-KAUT GUMMI KUNST 42:107–110

  14. Brück D (1989) IR spectrometric determination of the proportions of acrylonitrile, butadiene and hydrogenated butadiene in hydrogenated acrylonitrile-butadiene rubbers. Part 2. Residual double bonds in commercial HNBR products. KGK-KAUT GUMMI KUNST 42:194–197

  15. Wang H, Yang LJ, Rempel GL (2013) Homogeneous hydrogenation art of nitrile butadiene rubber: a review. Polym Rev 53(2):192–239

    Article  CAS  Google Scholar 

  16. Mou H, Shen F, Cao Y et al (2008) Study on the non-liquid-phase coordination crosslinking reaction of acrylonitrile-butadiene rubber/copper sulfate composites. Acta polymerica sinica 9:910–913

    Google Scholar 

  17. Mou H, Shen F, Shi Q et al (2012) A novel nitrile butadiene rubber/zinc chloride composite: coordination reaction and miscibility. Eur Polymer J 48(4):857–865

    Article  CAS  Google Scholar 

  18. Mou H, Xue P, Shi Q et al (2012) A direct method for the vulcanization of acrylate rubber through in situ coordination crosslinking. Polym J 44(10):1064–1069

    Article  CAS  Google Scholar 

  19. Ou HM, Wang Y, Zhou W et al (2016) Kinetics investigation on the hydrogenation of acrylonitrile-butadiene rubber latex by using new catalytic reaction system. Catal Commun 84:183–187

    Article  CAS  Google Scholar 

  20. Li SY (2005) Studies on gel mechanism and hydrogenation process of nitrile rubber latex. Bei**g university of chemical technology 1–53

  21.  Aylward F, Sawistowska MH (1962) Reductions with diimide. Chemical Industry (London) 484

  22. Parker DK, Roberts RF, Schiessl HW (1992) A new process for the preparation of highly saturated nitrile rubber in latex form. Rubber Chem Technol 65:245–258

    Article  CAS  Google Scholar 

  23. Xue JH (2019) Study on isobutene oligomerization over supported zinc sulfate catalyst. Dalian university of technology 1–60

  24. Zhou SQ, Li SY, Bai HD (2006) Study on crosslinking in diimide reduction of nitrile butadiene rubber. Rubber Chem Technol 79(4):602–609

    Article  CAS  Google Scholar 

  25. Severe G, White JL (2002) Transition behavior of hydrogenated acrylonitrile-butadiene rubber. KGK-KAUT GUMMI KUNST 55:144–148

    CAS  Google Scholar 

  26. Arsenault G, Brown T, Jobe I (1994) An approach to modern polymer development: enhancement of the service temperature range for hydrogenated nitrile-butadiene rubber (HNBR). 145th Meeting of the Rubber Division, ACS, Chicago, IL

  27. Kobatake T, Kodama K, Hayashi S, Yoshioka A (1997) Improvement of low-temperature flexibility of hydrogenated nitrile-butadiene rubber. Rubber Chem Technol 70:839–854

    Article  CAS  Google Scholar 

  28. Yang QZ (2004) Modern rubber technology. Sinopec Publishing, Bei**g, pp 1–685

    Google Scholar 

Download references

Funding

This work was supported by a grant (code no. 2018JMRH0205) from high performance of hydrogenated nitrile butadiene rubber prepared by new technology funded by the key research and development project of Shandong province, China.

Author information

Authors and Affiliations

Authors

Contributions

All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Jujie Sun or Chengzhong Zong.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Sun, J., Wang, C. et al. Diimide hydrogenation of NBR latex using different zinc ions catalytic system. Colloid Polym Sci 300, 661–674 (2022). https://doi.org/10.1007/s00396-022-04962-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-022-04962-6

Keywords

Navigation