Log in

Application of chain transfer agents in the two-part dispersion polymerization of cross-linked polymer microspheres

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

A Correction to this article was published on 18 August 2021

This article has been updated

Abstract

Cross-linked polymer microspheres have potential applications in many fields. Compared with seed polymerization, two-part dispersion polymerization is a very attractive method for preparing micron-sized cross-linked microspheres. However, the current dispersion polymerization would be adversely affected by the addition of more than 1 wt% of cross-linker at a time and even agglutination occurred. In this study, a facile method for the preparation of highly cross-linked microspheres by two-step dispersion polymerization of a chain transfer agent has been developed. The relationship between cross-linker and transfer has been studied in detail, and microspheres can be simultaneously maintained by adding the cross-linker ethylene glycol dimethacrylate (EGDMA) at concentrations of up to 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Ge H, Zheng W, Chen J, Zhang Q (2020) Single-molecule multi-component digital immunoassay method useful for detecting multiple tumor markers in blood samples comprises connecting capture antibodies, driving e.g. immune complex, dispensing into droplets and using probability. CN111381029-A

  2. Chou PC, Lin FP, Hsu HL, Chang CJ, Lu CH, Chen JK (2020) Electrorheological sensor encapsulating microsphere media for plague diagnosis with rapid visualization. ACS Sens 5(3):665–673. https://doi.org/10.1021/acssensors.9b01529

    Article  CAS  PubMed  Google Scholar 

  3. Tian H, Zhao WH, Liu XL, Liu CH, Peng NC (2020) Integrated single microbead-arrayed mu-fluidic platform for the automated detection of multiplexed biomarkers. ACS Sens 5(3):798–806. https://doi.org/10.1021/acssensors.9b02450

    Article  CAS  PubMed  Google Scholar 

  4. Sankova N, Shalaev P, Semeykina V, Dolgushin S, Odintsova E, Parkhomchuk E (2020) Spectrally encoded microspheres for immunofluorescence analysis. J Appl Polym Sci. https://doi.org/10.1002/app.49890

    Article  Google Scholar 

  5. Sheng T, **e ZY, Liu PM, Chen JL, Chen S, Ding HL, Deng JZ, Yuan Y, Deng DW (2018) Magnetic encoding plasmonic janus microbead-based suspension array for high sensitivity multiplex analysis. Adv Mater Interfaces 5(19):9. https://doi.org/10.1002/admi.201800343

    Article  CAS  Google Scholar 

  6. Zhu T, Luo P, Song LL, Deng J, Mao HH, Yu XF, Shao ZQ (2015) Development of a Luminex-based multiplex immunoassay for rapid determination of serum antibody titer induced by multi-component pertussis vaccine. Chinese Journal of Biologicals 28(1):79–83

    CAS  Google Scholar 

  7. Laczmanska I, Stembalska A (2013) New molecular methods in prenatal invasive diagnostics. Ginekol Pol 84(10):871–876

    Article  Google Scholar 

  8. Wei XY, Ao Z, Cheng L, He ZB, Huang QQ, Cai B, Rao L, Meng QF, Wang ZX, Sung Y, Liu W, Zhang YZ, Guo SS, Guo F, Zhao XZ (2018) Highly sensitive and rapid isolation of fetal nucleated red blood cells with microbead-based selective sedimentation for non-invasive prenatal diagnostics. Nanotechnology 29(43):11. https://doi.org/10.1088/1361-6528/aad8c4

    Article  CAS  Google Scholar 

  9. Huang HL, Zhang M, Wang Y, Lin N, He DQ, Chen MH, Chen LJ, Lin Y, Xu LP (2018) Application of the BACs-on-Beads (TM) assay for rapid prenatal detection application of BoBs (TM) for PND of aneuploidies and microdeletions. Mol Reprod Dev 85(2):146–154. https://doi.org/10.1002/mrd.22945

    Article  CAS  PubMed  Google Scholar 

  10. Drago F, Karpasitou K, Poli F (2009) Microarray beads for identifying blood group single nucleotide polymorphisms. Transfus Med Hemother 36(3):157–160. https://doi.org/10.1159/000215707

    Article  PubMed  PubMed Central  Google Scholar 

  11. Danzer M, Polin H, Stabentheiner S, Hartmann CC, Lennartz K, Gabriel C (2010) Comprehensive polymorphism analysis of ABO using allele-specific separation by bead technology and subsequent sequencing. Vox Sang 98(3):451–454. https://doi.org/10.1111/j.1423-0410.2009.01269.x

    Article  CAS  PubMed  Google Scholar 

  12. Guo YF, Yang H, Ren W, Gu HC, Xu GL, Xu H (2020) A noise-free, ultrasensitive and accurate miRNAs detection using streptavidin coated magnetic microsphere based stem-loop ligation PCR. Talanta 213:8. https://doi.org/10.1016/j.talanta.2020.120845

    Article  CAS  Google Scholar 

  13. Pan QJ, Wu WQ, Liao SZ, Wang SJ, Zhao CF, Li C, Wu P (2019) Comparison of the detection performance of two different one-step-combined test strips with fluorescent microspheres or colored microspheres as tracers for influenza A and B viruses. Virol J 16:6. https://doi.org/10.1186/s12985-019-1190-0

    Article  Google Scholar 

  14. Burke RM, McKenna JP, Cox C, Coyle PV, Shields MD, Fairley DJ (2016) A comparison of different pre-lysis methods and extraction kits for recovery of Streptococcus agalacticae (Lancefield group B Streptococcus) DNA from whole blood. J Microbiol Methods 129:103–108. https://doi.org/10.1016/j.mimet.2016.08.016

    Article  CAS  PubMed  Google Scholar 

  15. Prikryl P, Horák D, Tichá M, Kucerová Z (2006) Magnetic IDA-modified hydrophilic methacrylate-based polymer microspheres for IMAC protein separation. J Sep Sci 29(16):2541–2549. https://doi.org/10.1002/jssc.200600248

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Y, Li D, Yu M, Ma W, Guo J, Wang C (2014) Fe3O4/PVIM-Ni2+ magnetic composite microspheres for highly specific separation of histidine-rich proteins. ACS Appl Mater Interfaces 6(11):8836–8844. https://doi.org/10.1021/am501626t

    Article  CAS  PubMed  Google Scholar 

  17. Sun G, Ruan B, Mu N (2020) Ultra-large pore chromatographic medium used for virus particle purification, comprises substrate comprising polystyrene-divinylbenzene microspheres. CN111394321-A

  18. Zhou L, Ma H, Han C, Hu W, Zhang S, Zhang L, Yang H (2018) A novel light diffuser based on the combined morphology of polymer networks and polymer balls in a polymer dispersed liquid crystals film. RSC Adv 8(39):21690–21698

    CAS  Google Scholar 

  19. Chern CS (2006) Emulsion polymerization mechanisms and kinetics. Prog Polym Sci 31(5):443–486. https://doi.org/10.1016/j.progpolymsci.2006.02.001

    Article  CAS  Google Scholar 

  20. Zhu Y, Wu G (2020) Preparation of monodisperse polystyrene nanoparticles with tunable sizes based on soap-free emulsion polymerization technology. Colloid Polym Sci. https://doi.org/10.1007/s00396-020-04766-6

    Article  Google Scholar 

  21. Song JS, Tronc F, Winnik MA (2004) Two-stage dispersion polymerization toward monodisperse, controlled micrometer-sized copolymer particles. J Am Chem Soc 126(21):6562–6563. https://doi.org/10.1021/ja048862d

    Article  CAS  PubMed  Google Scholar 

  22. Song Z, Daniels ES, Sudol ED, Klein A, El-Aasser MS (2014) Seeded dispersion polymerization of MMA using submicron PMMA particles as seed: a mechanistic study. Colloid Polym Sci 292(3):645–652. https://doi.org/10.1007/s00396-013-3116-5

    Article  CAS  Google Scholar 

  23. Shaipulizan NS, Jamil SNAM, Abdullah LC, Choong TSY, Kamaruzaman S, Subri NNS, Othman N (2020) Hypercrosslinked poly(AN-co-EGDMA-co-VBC): synthesis via suspension polymerization, characterizations, and potential to adsorb diclofenac and metformin from aqueous solution. Colloid Polym Sci 298(12):1649–1667. https://doi.org/10.1007/s00396-020-04757-7

    Article  CAS  Google Scholar 

  24. Li K, Stover HDH (1993) Synthesis of monodisperse poly(divinylbenzene) microspheres. J Polym Sci A Polym Chem 31(13):3257–3263. https://doi.org/10.1002/pola.1993.080311313

    Article  CAS  Google Scholar 

  25. Song JS, Winnik MA (2005) Cross-linked, monodisperse, micron-sized polystyrene particles by two-stage dispersion polymerization. Macromolecules 38(20):8300–8307. https://doi.org/10.1021/ma050992z

    Article  CAS  Google Scholar 

  26. Peng B, van der Wee E, Imhof A, van Blaaderen A (2012) Synthesis of monodisperse, highly cross-linked, fluorescent PMMA particles by dispersion polymerization. Langmuir 28(17):6776–6785. https://doi.org/10.1021/la301288r

    Article  CAS  PubMed  Google Scholar 

  27. Downey JS, McIsaac G, Frank RS, Stover HDH (2001) Poly(divinylbenzene) microspheres as an intermediate morphology between microgel, macrogel, and coagulum in cross-linking precipitation polymerization. Macromolecules 34(13):4534–4541. https://doi.org/10.1021/ma000386y

    Article  CAS  Google Scholar 

  28. Wang H, Liu B, Zhang M, Du S, Wu G, Hu Y, Zhang J, Liu X (2020) Narrow-disperse, cross-linked polymer microspheres by one-step dispersion polymerization with a chain transfer agent. Polym Adv Technol 31(3):407–414. https://doi.org/10.1002/pat.4776

    Article  CAS  Google Scholar 

  29. Song JS, Winnik MAJM (2005) Cross-Linked Monodisperse, Micron-Sized Polystyrene Particles by Two-Stage Dispersion Polymerization. Macromolecules 38(20):8300–8307

    Article  CAS  Google Scholar 

  30. Liu P, Liu WM, Xue QJ (2004) In situ radical transfer addition polymerization of styrene from silica nanoparticles. Eur Polym J 40(2):267–271. https://doi.org/10.1016/j.eurpolymj.2003.10.003

    Article  CAS  Google Scholar 

  31. Li ZK, Song SX, Zhao XC, Lv X, Sun SL (2017) Grafting modification of the reactive core-shell particles to enhance the toughening ability of polylactide. Materials 10(8):12. https://doi.org/10.3390/ma10080957

    Article  CAS  Google Scholar 

  32. Terzyk AP (2001) The influence of activated carbon surface chemical composition on the adsorption of acetaminophen (paracetamol) in vitro Part II. TG, FTIR, and XPS analysis of carbons and the temperature dependence of adsorption kinetics at the neutral pH. Colloid Surf A Physicochem Eng Asp 177(1):23–45. https://doi.org/10.1016/s0927-7757(00)00594-x

Download references

Funding

This work was supported by the Youth Innovation Promotion Association, the Chinese Academy of Sciences (Grant No. 2019321), the Program of Jihua Laboratory (Grant No. X190161TD190), the Program of Suzhou biomedical and engineering institute (Grant No. E0550109 and No. Y851381105), and the Program of **an guoke medical engineering company (Grant No. Y95P031P05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei **a or Pengli Bai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In this article the correction in affiliation assignment were incorrectly carried out. The authors list should be "Binbin Lv1, Hui Wang2,3, Liang He2, Xueyan Nan2, Tong Wang2, Zhizhou Liu2, Wei **a1, Pengli Bai2,4".

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, B., Wang, H., He, L. et al. Application of chain transfer agents in the two-part dispersion polymerization of cross-linked polymer microspheres. Colloid Polym Sci 299, 1305–1313 (2021). https://doi.org/10.1007/s00396-021-04843-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04843-4

Keywords

Navigation