Log in

Samarium colloids prepared in organic solvents and active solids

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Samarium colloids in organic solvents (2-methoxyethanol, 2-propanol, 2-propanone, and 1,2-dimethoxyethane) were obtained by the chemical liquid deposition (CLD) method at 77 K. The colloids were characterized by electron diffraction, energy-dispersive X-ray (EDX), UV-Vis spectroscopy, kinetic stability, and electrophoretic measurements. The colloid stability depends on the solvent used and the metal concentration. The higher stability was obtained in 2-methoxyethanol, which is in agreement with previous results for other lanthanide colloids. The zeta potential (ζ) of the colloids ranges between 0.138 and 1.945 mV. The UV-Vis spectra exhibit bands characteristic of the solvent. The 2-methoxyethanol shows bands at 205 and 234 nm very similar to the 2-propanol which exhibits bands at 202 and 253 nm for 2.5E−4 M concentration. However, bands for 1,2-dimethoxyethane and 2-propanone colloids were impossible to determine due to their highest extinction coefficient values. A dependence of the UV/Vis spectral properties of these new sol materials with Sm(III) is described. In all cases, the EDX analyses confirm the presence of metal in the colloids. The electron diffraction gives the most common (hkl) planes corresponding to Sm and Sm2O3 (211) and (100), respectively. As shown by the particle size distribution determined from transmission electron microscopy (TEM), the Sm-2-methoxyethanol colloids exhibit ranges from 1.6 and 2.9 nm, but the Sm-2-propanol colloids show ranges from 2.3 to 2.5 nm; the medium particle size of Sm-1,2-dimetoxyethane colloid is 0.8 nm, and the Sm-2-propanone colloids have a range from 1.0 and 4.3 nm, exhibiting a solvent polarity dependence. Also, active solids from the evaporation of the colloids which have been fully characterized by several chemical and physical techniques have been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cárdenas G, Klabunde K, Dale EB (1987) Langmuir 3:986

    Article  Google Scholar 

  2. L. C. Thompson, K. A. Gschneider, L. Eyring (Eds.) (1979) Handbook on the Physics and Chemistry of Rare Earths, North-Holland, Amsterdam, 3: 209

  3. W. T. Carnall, K. A. Gschneider, L. Eyring (Eds.) (1979) Handbook on the Physics and Chemistry of Rare Earths, North-Holland, Amsterdam, 3, 171

  4. Reisfeld R (1975) Struct Bond (Berlin) 22:123

    Article  CAS  Google Scholar 

  5. Reisfeld R, Jorgensen CK (1977) Inorg Chem Concepts 1:64

    Article  Google Scholar 

  6. G. Blasse, K. A. Gschneider, L. Eyring (Eds.) (1979) Handbook on the Physics and Chemistry of Rare Earths, North-Holland, Amsterdam, 4: 237

  7. Musik, Keating, Keefe, Natan (1997) Chem Mater 9:1499

    Article  Google Scholar 

  8. Pao RP (1996) Solid State Commun 99:439

    Article  Google Scholar 

  9. Yi-Shan S, Bing Y, Zhen-**a C (2004) J of Solid State Chem 177:3805

    Article  Google Scholar 

  10. Raminovich EM, Scmulovich J, Fratello VJ, Kopyov NY (1987) Am Ceram Soc Bull 6:1505

    Google Scholar 

  11. Hao J, Cocivera M (2001) Appl Phys Lett 79:740

    Article  CAS  Google Scholar 

  12. Mc Henry, Laughlin (2000) Acta Mater 48:223

    Article  CAS  Google Scholar 

  13. Lewis L (1993) Chem Rev 93:2693

    Article  CAS  Google Scholar 

  14. Bredol M, Jüstel T, Gutzov S (2001) Opt Mater 18:337

    Article  CAS  Google Scholar 

  15. Gustov S, Berger C, Bredol M, Lengauer CL (2002) J Mater Sci Lett 21:1105

    Article  Google Scholar 

  16. Bredol M, Gustov S (2002) Opt Mater 20:233

    Article  CAS  Google Scholar 

  17. Ahmed G, Koleva B, Gustov S, Petrov I (2007) J Incl Phenom Macromolecules 59:167

    Article  CAS  Google Scholar 

  18. Koleva B, Ahmed G, Gustov S, Petrov I (2008) Spectrochim Acta 69:587

    Article  CAS  Google Scholar 

  19. Yan B, Zhang H, Wang S, Ni J (1997) Mater Chem Phys 52:151

    Google Scholar 

  20. Ci Y, Li Y, Chang W (1992) Anal Chim Acta 248:589

    Article  Google Scholar 

  21. Scott L, Horrocks W (1992) J Inorg Biochem 46:193

    Article  Google Scholar 

  22. Mirkovic, Hines, Sreekumari, Scholes (2005) Chem Mater 17:3451

    Article  CAS  Google Scholar 

  23. Jirgensons B, Straumanis ME (1962) A short textbook of colloid chemistry. MacMillan, New York, pp. 132–343

    Google Scholar 

  24. Ostwald W (1907) Colloid-Zeitschrift 1:331

    Google Scholar 

  25. Segura RD, Reyes-Gasga J, Cárdenas G (2005) T Colloid Polym Sci 283:854–861

    Article  CAS  Google Scholar 

  26. Cárdenas G, Contreras JG, Godoy J (2006) J Chil Chem Soc 51:32

    Google Scholar 

  27. Cárdenas G, Godoy O, Contreras JG (2009) J Chil Chem Soc 54:6–11

    Google Scholar 

  28. Cárdenas G, Chil J (2005) Chem Soc 50:603–612

    Google Scholar 

  29. M. Smoluchovski (1914) Handbuch der Elecktrizitat un des Magnetismus, Vol. 2, Leipzig, Germany, 366

  30. Cárdenas G, Klabunde KJ, Dale EB (1987) SPIEL, modeling of optical thin films. Vol 821

  31. Mie G (1908) Ann Phys 25:378

    Google Scholar 

  32. (1968) Spectroscopy and Structure of Metal Chelate Compounds, John Wiley & Sons Inc, USA, Nakamoto, Mc Carthy, 73–80

  33. Ringler M, Schwemer A, Wunderlich M, Nichtl A, Kurzinger K, Klar TA, Feldmann J (2008) Phys Rev Lett 100:203002

    Article  CAS  Google Scholar 

  34. Kravets VG, Zoriniants G, Burrows CP, Schedin F, Geim AK, Barnes WL, Grigorenko AN (2010) Nano Lett 10:874–879

    Article  CAS  Google Scholar 

  35. Zoriniants G, Barnes LW (2008) New J Phys 10:105002

    Article  Google Scholar 

  36. Anger P, Bharadwaj P, Novotny L (2006) Phys Rev Lett 96:113002

    Article  Google Scholar 

  37. Novotny L, Hecht B (2006) Principles of nano-optics. Cambridge University, London

    Book  Google Scholar 

  38. (2004) Síntesis, Caracterización y Propiedades de Nanopartículas. Bimetálicas Ni-Sn, Tesis de Doctorado, Universidad de Concepción, Chile, Yasna León, 40

  39. Creighton, Eadon (1991) J Chem Soc Faraday Trans 87:3881

    Article  CAS  Google Scholar 

  40. (2000) Formación y Caracterización de Coloides de Pr, Yb, Er y de Coloides Bimetálicos de Pd-Ag y Ni, Tesis de Doctorado, Universidad de Concepción, Chile, Ricardo Oliva, 27–33.

  41. G. Cárdenas and K.J. Klabunde (1998) Nanoparticles and nanostructured films, preparation, characterization and applications. Ed J. A. Fendler, Ed. Wiley-VCH, Weinheim

  42. Cárdenas G, Oliva R (1993) Bol Soc Chil Quím 38:301

    Google Scholar 

  43. (1983) Powder Diffraction File, American Society for Testing Materials, Department of Geology, University of Chicago, Vol. 15, p 430

  44. Riwotski K, Haase M (1998) J Phys Chem 102:10129–10135

    Article  Google Scholar 

  45. Cárdenas G, Oliva R (1999) Colloid and Polym Sci 277:164

    Article  Google Scholar 

  46. Meléndrez MF, Cárdenas G, Diaz JV, Cruzat CC, Arbiol J (2009) Colloid Polym Sci 287:13–22

    Article  Google Scholar 

  47. R. M. Silverstein, G. C. Bassler, T.C. Morrill (1991) Spectrometric identification of organic compounds, J. Wiley&Sons, Inc

Download references

Acknowledgments

The authors would like to thank the financial support of Fondecyt Grant No. 1040456, Juan Bartulin Fodic Organic Analysis Laboratory, Inorganic and Electrochemistry Synthesis Laboratory—U. Chile, and electron microscopy facilities from Universidad de Concepción and Metal Atom Laboratory from Quitoquimica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Cárdenas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cárdenas, G., Godoy, O., Moreno, Y. et al. Samarium colloids prepared in organic solvents and active solids. Colloid Polym Sci 294, 2109–2119 (2016). https://doi.org/10.1007/s00396-016-3950-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3950-3

Keywords

Navigation