Log in

Design and characterization of novel poly(vinyl chloride) nanocomposite films with zinc oxide immobilized with biocompatible citric acid

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Herein, first ZnO nanoparticles (NPs) were modified with citric acid (CA) to prevent agglomeration and achieve good dispersion of NPs in poly(vinyl chloride) (PVC) matrix along with controlling the size. Different concentrations of modified ZnO-CA NPs were used to fabricate PVC/ZnO-CA nanocomposite films, and the obtained materials were characterized by several techniques such as Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. Mechanical test and thermal analysis were also carried out on PVC/ZnO-CA nanocomposite films. The ultrasonic irradiation—which is an environmentally safe procedure—was applied for all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polym 49:3187–3204

    Article  CAS  Google Scholar 

  2. Mallakpour S, Behranvand V (2014) Optical, mechanical, and thermal behavior of poly(vinyl alcohol) composite films embedded with biosafe and optically active poly(amide–imide)-ZnO quantum dot nanocomposite as a novel reinforcement. Colloid Polym Sci 292:2857–2867

    Article  CAS  Google Scholar 

  3. Fischer H (2003) Polymer nanocomposites: from fundamental research to specific applications. Mat Sci Eng 23:763–772

    Article  Google Scholar 

  4. Dunbai Z, Changgen C, Demin J (2006) Preparation and mechanical properties of solid-phase grafting nanocomposites of PVC/graft copolymers/MMT. J Wuhan Univ Technol Mater Sci Ed 21:5–8

    Article  Google Scholar 

  5. Ratnam CT, Kamaruddin S, Abdullah Z (2011) Irradiation modification of PVC/NBR blend. Polym Plast Technol Eng 50:833–838

    Article  CAS  Google Scholar 

  6. Jaganathan SK, Balaji A, Vellayappan MV, Subramanian AP, John AA, Asokan MK, Supriyanto E (2014) Review: radiation-induced surface modification of polymers for biomaterial application. J Mater Sci 50:2007–2018

    Article  Google Scholar 

  7. Gong F, Zhao C, Feng M, Qin H, Yang M (2004) Synthesis and characterization of PVC/montmorillonite nanocomposites. J Mater Sci 39:293–294

    Article  CAS  Google Scholar 

  8. Fan Z, Lu JG (2005) Zinc oxide nanostructures: synthesis and properties. J Nanosci Nanotechno 5:1561–1573

    Article  CAS  Google Scholar 

  9. Yang P, Yan H, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He R, Choi HJ (2002) Controlled growth of ZnO nanowires and their optical properties. Adv Funct Mater 12:323

    Article  CAS  Google Scholar 

  10. Maharani V, Reeta D, Sundaramanickam A, Vijayalakshmi S, Balasubramanian T (2014) Isolation and characterization of citric acid producing Aspergillus niger from spoiled coconut. Int J Curr Microbiol App Sci 3:700–705

    Google Scholar 

  11. Adeli M, Bahari A, Hekmatara H (2008) Carbon nanotube-graft-poly(citric acid) nanocomposites. Nano 3:37–44

    Article  CAS  Google Scholar 

  12. Anedda R, Cannas C, Musinu A, Pinna G, Piccaluga G, Casu M (2008) A two-stage citric acid–sol/gel synthesis of ZnO/SiO2 nanocomposites: study of precursors and final products. J Nanopart Res 10:107–120

    Article  CAS  Google Scholar 

  13. Mallakpour S, Abdolmaleki A, Rostami M (2014) Morphological and thermal properties of poly (amide-imide)/ZnO nanocomposites derived from 4,4′-methylenebis (3-chloro-2, 6-diethyl trimellitimidobenzene) and 3,5-diamino-N-(4-hydroxyphenyl) benzamide. Polym Plast Technol Eng 53:1615–1624

    Article  CAS  Google Scholar 

  14. Mallakpour S, Derakhshan F (2014) Opportunities and challenges in the Use of TiO2 nanoparticles modified with citric acid to synthesize advanced nanocomposites based on poly (amide-imide) containing N, N′-(Pyromellitoyl)-bis-L-leucine segments. Int J Polym Anal Charact 19:750–764

    Article  CAS  Google Scholar 

  15. Abdolmaleki A, Mallakpour S, Borandeh S (2014) Tailored functionalization of ZnO nanoparticle via reactive cyclodextrin and its bionanocomposite synthesis. Carbohyd Polym 103:32–37

    Article  CAS  Google Scholar 

  16. Mudunkotuwa IA, Grassian VH (2010) Citric acid adsorption on TiO2 nanoparticles in aqueous suspensions at acidic and circumneutral pH: surface coverage, surface speciation, and its impact on nanoparticle-nanoparticle interactions. J Am Chem Soc 132:14986–14994

    Article  CAS  Google Scholar 

  17. Elashmawi I, Hakeem N, Marei L, Hanna F (2010) Structure and performance of ZnO/PVC nanocomposites. Phys B Condens Matter 405:4163–4169

    Article  CAS  Google Scholar 

  18. Chakrabarti S, Chaudhuri B, Bhattacharjee S, Das P, Dutta BK (2008) Degradation mechanism and kinetic model for photocatalytic oxidation of PVC–ZnO composite film in presence of a sensitizing dye and UV radiation. J Hazard Mater 154:230–236

    Article  CAS  Google Scholar 

  19. Martins-Franchetti SM, Domingos RN, Trombini RC (2002) Modifications on PVC films by ultrasound. Ultrason Sonochem 9:139–141

    Article  CAS  Google Scholar 

  20. Abdolmaleki A, Mallakpour S, Borandeh S (2012) Effect of silane-modified ZnO on morphology and properties of bionanocomposites based on poly (ester-amide) containing tyrosine linkages. Polym Bull 69:15–28

    Article  CAS  Google Scholar 

  21. Tanasa F, Zanoaga M, Darie R (2014) Evaluaation of stress–strain properties of some new polymer-clay nanocomposites for aerospace and defence applications. In: International conference of scientific paper. Brasov, 22–24 May

  22. Guo Z, Kim TY, Lei K, Pereira T, Sugar JG, Hahn HT (2008) Strengthening and thermal stabilization of polyurethane nanocomposites with silicon carbide nanoparticles by a surface-initiated-polymerization approach. Compos Sci Technol 68:164–170

    Article  CAS  Google Scholar 

  23. Kosuda T, Okada T, Nozaka S, Matsuzawa Y, Shimizu T, Hamanaka S, Mishima S (2012) Characteristics and mechanism of low temperature dehydrochlorination of poly(vinyl chloride) in the presence of zinc(II)oxide. Polym Degrad Stabil 97:584–591

    Article  CAS  Google Scholar 

  24. Mallakpour S, Dinari M, Azadi E (2015) Grafting of citric acid as a green coupling agent on the surface of CuO nanoparticle and its application for synthesis and characterization of novel nanocomposites based on poly (amide-imide) containing N-trimellitylimido-L-valine linkage. Polym Plast Technol Eng 54:594–602

    Article  CAS  Google Scholar 

  25. Mallakpour S, Sirous F (2015) Polymer nanocomposites containing N-Trimellitylimido-L-phenylalanine dicarboxylic acid moieties reinforced with α-Al2O3 nanoparticles modified with citric acid: synthesis and characterization. Polym Plast Technol Eng 54:532–540

    Article  CAS  Google Scholar 

  26. Li G, Wang M, Huang X, Li H, He H (2015) Effect of zinc maleate/zinc oxide complex on thermal stability of poly(vinyl chloride). J Appl Polym Sci 132:4164–4173

    Google Scholar 

  27. Folarin O, Sadiku E (2011) Thermal stabilizers for poly (vinyl chloride): a review. Int J Phys Sci 6:4323–4330

    Google Scholar 

  28. Sarker M, Rashid MM (2012) Poly(vinyl chloride) (PVC) waste plastic treatment using zinc oxide with activated carbon and produced hydrocarbon fuel for petroleum refinery. Int J Eng Sci 1:29–41

    Google Scholar 

  29. Qu H, Wu W, Jiao Y, Xu J (2005) Thermal behavior and flame retardancy of flexible poly (vinyl chloride) treated with Al(OH)3 and ZnO. Polym Int 54:1469–1473

    Article  CAS  Google Scholar 

Download references

Funding

The authors appreciatively acknowledge the financial support of the Research Affairs Division, Isfahan University of Technology (IUT), Isfahan. Further financial support from National Elite Foundation (NEF) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadpour Mallakpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallakpour, S., Javadpour, M. Design and characterization of novel poly(vinyl chloride) nanocomposite films with zinc oxide immobilized with biocompatible citric acid. Colloid Polym Sci 293, 2565–2573 (2015). https://doi.org/10.1007/s00396-015-3647-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3647-z

Keywords

Navigation