Log in

Cu nanoparticles: synthesis, crystallographic characterization, and stability

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Synthesis, crystallographic characterization, and time evaluation morphology of stable copper nanoparticles (CuNPs) have been reported for the first time at room temperature without the protection of any inert gas in presence of cetyltrimethylammonium bromide (CTABr). The morphology and structure determination were determined by using the conventional techniques such as UV–vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), electron diffraction (EDX) patterns, thermogravimetric analysis (TGA), and X-ray diffraction (XRD). Reaction time has marked influence on the size, shape, and the size distribution of CuNPs. From the TEM analysis, it was found that the initially, quantum dots, nanorods and some irregular particles were formed. As the reaction time increases, triangular nanoplates along with nanorods were formed. The optical band gap and width of the band tail of the Cu nanostructural were estimated by using the absorption spectrum fitting method. The work reported in this paper would be helpful for the large-scale production of CuNPs at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Scheme 2
Fig. 7

Similar content being viewed by others

References

  1. Gou L, Murphy CJ (2003) Solution-phase synthesis of Cu2O nanocubes. Nano Lett 3:231–234

    Article  CAS  Google Scholar 

  2. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962

    Article  CAS  Google Scholar 

  3. Khullar P, Singh V, Mahal A, Dave PN, Thakur S, Kaur G, Singh J, Kamboj SS, Bakshi MS (2012) Bovine serum albumin bioconjugated gold nanoparticles: synthesis, hemolysis, and cytotoxicity toward cancer cell lines. J Phys Chem C 116:8834–8843

    Article  CAS  Google Scholar 

  4. Martinez-Rodriguez RA, Vidal-Iglesias FJ, Solla-Gullon J, Cabrera CR, Feliu JM (2014) Synthesis of Pt nanoparticles in water-in-oil microemulsion: effect of HCl on their surface structure. J Am Chem Soc 136:1280–1283

    Article  CAS  Google Scholar 

  5. Lai D, Liu T, Jiang G, Chen W (2013) Synthesis of highly stable dispersions of copper nanoparticles using sodium hypophosphite. J Appl Polym Sci 128:1443–1449

    Article  CAS  Google Scholar 

  6. Itakura T, Torigoe K, Esumi K (1995) Preparation and characterization of ultrafine metal particles in ethanol by UV irradiation using a photoinitiator. Langmuir 11:4129–4134

    Article  CAS  Google Scholar 

  7. Bakshi MS (2011) Nanoshape control tendency of phospholipids and proteins: protein–nanoparticle composites, seeding, self-aggregation, and their applications in bionanotechnology and nanotoxicology. J Phys Chem C 115:13947–13960

    Article  CAS  Google Scholar 

  8. Rafey A, Shrivastava KBL, Iqbal SA, Khan Z (2011) Growth of Ag-nanoparticles using aspartic acid in aqueous solutions. J Colloid Interface Sci 354:190–195

    Article  CAS  Google Scholar 

  9. Shervani Z, Yamamoto Y (2011) Carbohydrate-directed synthesis of silver and gold nanoparticles: effect of the structure of carbohydrates and reducing agents on the size and morphology of the composites. Carbohydr Res 346:651–658

    Article  CAS  Google Scholar 

  10. Mott D, Galkowski J, Wang L, Luo J, Zhong CJ (2007) Synthesis of size-controlled and shaped copper nanoparticles. Langmuir 23:57405745

    Article  Google Scholar 

  11. Wu CW, Mosher BP, Zeng TF (2006) One-step green route to narrowly dispersed copper nanocrystals. J Nanoparticle Res 8:965–969

    Article  CAS  Google Scholar 

  12. Zhao J-J, Zhu J-M, Hong NB, Chen H-Y (2004) Microwave-induced polyol-process synthesis of copper and copper oxide nanocrystals with controllable morphology. Eur J Inorg Chem 2004:4072–4080

    Article  Google Scholar 

  13. Wu SH, Chen DH (2004) Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. J Colloid Interface Sci 273:165–169

    Article  CAS  Google Scholar 

  14. Lisiecki I, Billoudet F, Pileni MP (1996) Control of the shape and the size of copper metallic particles. J Phys Chem 100:4160–4166

    Article  CAS  Google Scholar 

  15. Zhang X, Zhang D, Ni X, Zheng H (2006) One-step preparation of copper nanorods with rectangular cross sections. Solid State Commun 139:412–414

    Article  CAS  Google Scholar 

  16. **ong J, Wang Y, Xue Q, Wu X (2011) Synthesis of highly stable dispersions of nanosized copper particles using L-ascorbic acid. Green Chem 13:900–904

    Article  CAS  Google Scholar 

  17. Bicer M, Sisman I (2010) Controlled synthesis of copper nano/microstructures using ascorbic acid in aqueous CTAB solution. Powder Technol 198:279–284

    Article  CAS  Google Scholar 

  18. Galletti AMR, Antonetti C, Marracci M, Piccinelli F, Tellini B (2013) Novel microwave-synthesis of Cu nanoparticles in the absence of any stabilizing agent and their antibacterial and antistatic applications. Appl Surf Sci 280:610–618

    Article  Google Scholar 

  19. Vitulli G, Bernini M, Bertozzi S, Pitzalis E, Salvadori P, Coluccia S, Martra G (2002) Nanoscale copper particles derived from solvated Cu atoms in the activation of molecular oxygen. Chem Mater 14:1183–1186

    Article  CAS  Google Scholar 

  20. Liz-Marzán LM (2004) Nanometals: formation and color. Mater Today 7:26–31

    Article  Google Scholar 

  21. Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA (2011) Synthesis and antimicrobial activity of copper nanoparticles. Mater Lett 71:114–116

    Article  Google Scholar 

  22. Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve- Zacheo T, Alessio MD, Zambonin PG, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17:5255–5262

    Article  CAS  Google Scholar 

  23. Li Q, Tang H, Li Y, Wang M, Wang L-F, **a C-G (2000) Synthesis, characterization, and antibacterial activity of novel Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) complexes with vitamin K3-thiosemicarbazone. J Inorg Biochem 78:167–174

    Article  CAS  Google Scholar 

  24. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105:4065–4067

    Article  CAS  Google Scholar 

  25. Nikoobakht B, El-Sayed MA (2001) Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods. Langmuir 17:6368–6374

    Article  CAS  Google Scholar 

  26. Bakshi MS, Kaur H, Khullar P, Banipal TS, Kaur G, Singh N (2011) Protein films of bovine serum albumen conjugated gold nanoparticles: a synthetic route from bioconjugated nanoparticles to biodegradable protein films. J Phys Chem C 115:2982–2992

    Article  CAS  Google Scholar 

  27. Bunton CA (2006) The dependence of micellar rate effects upon reaction mechanism. Adv Colloid Interf Sci 123:333–343

    Article  Google Scholar 

  28. Pham LQ, Sohn JH, Kim CW, Park JH, Kang HS, Lee BC, Kang YS (2012) Copper nanoparticles incorporated with conducting polymer: effects of copper concentration and surfactants on the stability and conductivity. J Colloid Interf Sci 365:103–109

    Article  CAS  Google Scholar 

  29. Lisiecki I, Filankembo A (2000) Structural investigations of copper nanorods by high-resolution TEM. Phys Rev B 61:4968

    Article  CAS  Google Scholar 

  30. Thanks to the reviewer for useful suggestion.

  31. Phuoc TX, Chyu MK (2013) Synthesis and characterization of nanocomposites using the nanoscale laser soldering in liquid technique. J Mater Sci Nanotechnol 1:101–105

    Google Scholar 

  32. Tauc J, Menth A (1972) States in the gap. J Non-Cryst Solids 569:10

    Google Scholar 

  33. Souri D, Shomalian K (2009) Band gap determination by absorption spectrum fitting method (ASF) and structural properties of different compositions of (60 − x) V2O5–40TeO2–xSb2O3 glasses. J Non-Cryst Solids 355:1597–1601

    Article  CAS  Google Scholar 

  34. Ghobadi N (2013) Int Nano Lett 3:2

    Article  Google Scholar 

  35. Vaseem M, Lee KM, Kim DY, Hahn Y-B (2011) Parametric study of cost-effective synthesis of crystalline copper nanoparticles and their crystallographic characterization. Mater Chem Phys 125:334–341

    Article  CAS  Google Scholar 

  36. Cierpiszewski R, Hebrant M, Szymanowski J, Tondre C (1996) Copper(II) complexation kinetics with hydroxyoximes in CTAB micelles. Effect of extractant hydrophobicity and additives. J Chem Soc Faraday Trans 92:249–255

    Article  CAS  Google Scholar 

  37. Henglein A (1993) Physicochemical properties of small metal particles in solution: “microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J Phys Chem 97:5457–5471

    Article  CAS  Google Scholar 

  38. Goia DV, Matijevic E (1998) Preparation of monodispersed metal particles. New J Chem 19:1203–1215

    Article  Google Scholar 

Download references

Acknowledgments

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant no. (S/1436/130/15). The authors, therefore, acknowledge with thanks DSR for technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaheer Khan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOCX 49 kb)

Fig. S2

(DOCX 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AL-Thabaiti, S.A., Obaid, A.Y., Khan, Z. et al. Cu nanoparticles: synthesis, crystallographic characterization, and stability. Colloid Polym Sci 293, 2543–2554 (2015). https://doi.org/10.1007/s00396-015-3633-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3633-5

Keywords

Navigation