Log in

Load and muscle group size influence the ergogenic effect of acute caffeine intake in muscular strength, power and endurance

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Introduction

Although acute caffeine intake seems to improve muscular strength–power–endurance performance, there is scarce evidence evaluating upper vs lower-body exercises at different loads. Thus, this study aimed to examine the effects of acute caffeine intake on upper and lower-body muscular strength, power and endurance performance at different loads.

Methods

Twenty resistance-trained athletes (male/female: 10/10; age: 23 ± 4 years; body mass: 70.6 ± 15.1) participated in a double-blind, placebo-controlled, cross-over and randomized study. Participants were provided with either 3 mg/kg of body mass of caffeine or maltodextrin (placebo). Sixty minutes after ingestion, they performed muscular strength and power assessment for bench press and back squat exercise at 25%, 50%, 75% and 90% 1-repetition-maximum (1RM), performing 3, 2, 1 and 1 repetitions respectively, followed by muscular endurance assessment for both exercises at 65% and 85% 1RM performing until task failure. Isometric handgrip, isometric mid-thigh pull and vertical jump tests were also performed.

Results

In muscular strength and power, compared to placebo, caffeine improved mean velocity (P = 0.045; pη2 = 0.101), mean power (P = 0.049; pη2 = 0.189) and rate of force development (RFD, P = 0.032; pη2 = 0.216), particularly in back squat exercise at 75% and 90% 1RM where mean velocity increased by 5–7% (P = 0.48–0.038; g = 0.348–1.413), mean power by 6–8% (P = 0.050–0.032; g = 0.547–0.818) and RFD by 17–97% (P = 0.042–0.046; g = 1.436–1.196). No differences were found in bench press exercise. In muscular endurance, caffeine improved the number of repetitions in all exercises and loads (P = 0.003; pη2 = 0.206), but only in back squat exercise at 85% 1RM, caffeine increased mean and peak velocity (8–9%, P = 0.006–0.004; g = 2.029–2.075), mean and peak power (10–13%, P = 0.006–0.003; g = 0.888–1.151) and force peak (3%, P = 0.009; g = 0.247).

Conclusions

Acute caffeine intake (3 mg/kg) improved muscular strength, power and endurance performance, revealing a more pronounced effect at high-loads (≥ 75% 1RM) and in lower-body (back squat) than in upper-body exercise (bench press) according to muscle group size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data described in the manuscript will be made available upon request pending to the corresponding author.

References

  1. Chester N, Wojek N (2008) Caffeine consumption amongst British athletes following changes to the 2004 WADA prohibited list. Int J Sports Med 29(6):524–528. https://doi.org/10.1055/s-2007-989231

    Article  CAS  PubMed  Google Scholar 

  2. Aguilar-Navarro M, Munoz G, Salinero JJ, Munoz-Guerra J, Fernandez-Alvarez M, Plata MDM, Del Coso J (2019) Urine caffeine concentration in do** control samples from 2004 to 2015. Nutrients. https://doi.org/10.3390/nu11020286

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wilk M, Filip A, Krzysztofik M, Gepfert M, Zajac A, Del Coso J (2020) Acute caffeine intake enhances mean power output and bar velocity during the bench press throw in athletes habituated to caffeine. Nutrients. https://doi.org/10.3390/nu12020406

    Article  PubMed  PubMed Central  Google Scholar 

  4. Grgic J, Trexler ET, Lazinica B, Pedisic Z (2018) Effects of caffeine intake on muscle strength and power: a systematic review and meta-analysis. J Int Soc Sports Nutr 15:11. https://doi.org/10.1186/s12970-018-0216-0

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pallares JG, Fernandez-Elias VE, Ortega JF, Munoz G, Munoz-Guerra J, Mora-Rodriguez R (2013) Neuromuscular responses to incremental caffeine doses: performance and side effects. Med Sci Sports Exerc 45(11):2184–2192. https://doi.org/10.1249/MSS.0b013e31829a6672

    Article  CAS  PubMed  Google Scholar 

  6. Mora-Rodriguez R, Pallares JG, Lopez-Gullon JM, Lopez-Samanes A, Fernandez-Elias VE, Ortega JF (2015) Improvements on neuromuscular performance with caffeine ingestion depend on the time-of-day. J Sci Med Sport 18(3):338–342. https://doi.org/10.1016/j.jsams.2014.04.010

    Article  PubMed  Google Scholar 

  7. Warren GL, Park ND, Maresca RD, McKibans KI, Millard-Stafford ML (2010) Effect of caffeine ingestion on muscular strength and endurance: a meta-analysis. Med Sci Sports Exerc 42(7):1375–1387. https://doi.org/10.1249/MSS.0b013e3181cabbd8

    Article  CAS  PubMed  Google Scholar 

  8. Grgic J, Del Coso J (2021) Ergogenic effects of acute caffeine intake on muscular endurance and muscular strength in women: a meta-analysis. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph18115773

    Article  PubMed  PubMed Central  Google Scholar 

  9. Duncan MJ, Stanley M, Parkhouse N, Cook K, Smith M (2013) Acute caffeine ingestion enhances strength performance and reduces perceived exertion and muscle pain perception during resistance exercise. Eur J Sport Sci 13(4):392–399. https://doi.org/10.1080/17461391.2011.635811

    Article  PubMed  Google Scholar 

  10. Grgic J (2021) Effects of caffeine on resistance exercise: a review of recent research. Sports Med 51(11):2281–2298. https://doi.org/10.1007/s40279-021-01521-x

    Article  PubMed  Google Scholar 

  11. Raya-Gonzalez J, Rendo-Urteaga T, Dominguez R, Castillo D, Rodriguez-Fernandez A, Grgic J (2020) Acute effects of caffeine supplementation on movement velocity in resistance exercise: a systematic review and meta-analysis. Sports Med 50(4):717–729. https://doi.org/10.1007/s40279-019-01211-9

    Article  PubMed  Google Scholar 

  12. Liu YJ, Chen J, Li X, Zhou X, Hu YM, Chu SF, Peng Y, Chen NH (2019) Research progress on adenosine in central nervous system diseases. CNS Neurosci Ther 25(9):899–910. https://doi.org/10.1111/cns.13190

    Article  PubMed  PubMed Central  Google Scholar 

  13. Guest NS, VanDusseldorp TA, Nelson MT, Grgic J, Schoenfeld BJ, Jenkins NDM, Arent SM, Antonio J, Stout JR, Trexler ET, Smith-Ryan AE, Goldstein ER, Kalman DS, Campbell BI (2021) International society of sports nutrition position stand: caffeine and exercise performance. J Int Soc Sports Nutr 18(1):1. https://doi.org/10.1186/s12970-020-00383-4

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rousseau E, Ladine J, Liu QY, Meissner G (1988) Activation of the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum by caffeine and related compounds. Arch Biochem Biophys 267(1):75–86. https://doi.org/10.1016/0003-9861(88)90010-0

    Article  CAS  PubMed  Google Scholar 

  15. Allen DG, Lamb GD, Westerblad H (2008) Impaired calcium release during fatigue. J Appl Physiol 104(1):296–305. https://doi.org/10.1152/japplphysiol.00908.2007

    Article  CAS  PubMed  Google Scholar 

  16. Ferreira TT, da Silva JVF, Bueno NB (2021) Effects of caffeine supplementation on muscle endurance, maximum strength, and perceived exertion in adults submitted to strength training: a systematic review and meta-analyses. Crit Rev Food Sci Nutr 61(15):2587–2600. https://doi.org/10.1080/10408398.2020.1781051

    Article  CAS  PubMed  Google Scholar 

  17. Giraldez-Costas V, Gonzalez-Garcia J, Lara B, Coso JD, Wilk M, Salinero JJ (2020) Caffeine increases muscle performance during a bench press training session. J Hum Kinet 74:185–193. https://doi.org/10.2478/hukin-2020-0024

    Article  PubMed  PubMed Central  Google Scholar 

  18. Grgic J, Sabol F, Venier S, Mikulic I, Bratkovic N, Schoenfeld BJ, Pickering C, Bishop DJ, Pedisic Z, Mikulic P (2019) What dose of caffeine to use: acute effects of 3 doses of caffeine on muscle endurance and strength. Int J Sports Physiol Perform. https://doi.org/10.1123/ijspp.2019-0433

    Article  PubMed  Google Scholar 

  19. Karayigit R, Naderi A, Akca F, Cruz C, Sarshin A, Yasli BC, Ersoz G, Kaviani M (2020) Effects of different doses of caffeinated coffee on muscular endurance, cognitive performance, and cardiac autonomic modulation in caffeine naive female athletes. Nutrients. https://doi.org/10.3390/nu13010002

    Article  PubMed  PubMed Central  Google Scholar 

  20. Norum M, Risvang LC, Bjornsen T, Dimitriou L, Ronning PO, Bjorgen M, Raastad T (2020) Caffeine increases strength and power performance in resistance-trained females during early follicular phase. Scand J Med Sci Sports 30(11):2116–2129. https://doi.org/10.1111/sms.13776

    Article  PubMed  Google Scholar 

  21. Pereira PEA, Azevedo P, Azevedo K, Azevedo W, Machado M (2021) Caffeine supplementation or carbohydrate mouth rinse improves performance. Int J Sports Med 42(2):147–152. https://doi.org/10.1055/a-1212-0742

    Article  CAS  PubMed  Google Scholar 

  22. Venier S, Grgic J, Mikulic P (2019) Acute enhancement of jump performance, muscle strength, and power in resistance-trained men after consumption of caffeinated chewing gum. Int J Sports Physiol Perform 14(10):1415–1421. https://doi.org/10.1123/ijspp.2019-0098

    Article  PubMed  Google Scholar 

  23. Venier S, Grgic J, Mikulic P (2019) Caffeinated gel ingestion enhances jump performance, muscle strength, and power in trained men. Nutrients. https://doi.org/10.3390/nu11040937

    Article  PubMed  PubMed Central  Google Scholar 

  24. Perez-Lopez A, Gonzalo-Encabo P, Perez-Kohler B, Garcia-Honduvilla N, Valades D (2021) Circulating myokines IL-6, IL-15 and FGF21 response to training is altered by exercise type but not by menopause in women with obesity. Eur J Sport Sci. https://doi.org/10.1080/17461391.2021.1939430

    Article  PubMed  Google Scholar 

  25. Beckham G, Mizuguchi S, Carter C, Sato K, Ramsey M, Lamont H, Hornsby G, Haff G, Stone M (2013) Relationships of isometric mid-thigh pull variables to weightlifting performance. J Sports Med Phys Fitness 53(5):573–581

    CAS  PubMed  Google Scholar 

  26. Perez-Lopez A, Salinero JJ, Abian-Vicen J, Valades D, Lara B, Hernandez C, Areces F, Gonzalez C, Del Coso J (2015) Caffeinated energy drinks improve volleyball performance in elite female players. Med Sci Sports Exerc 47(4):850–856. https://doi.org/10.1249/MSS.0000000000000455

    Article  PubMed  Google Scholar 

  27. Grgic J, Mikulic P (2021) Effects of caffeine on rate of force development: a meta-analysis. Scand J Med Sci Sports. https://doi.org/10.1111/sms.14109

    Article  PubMed  Google Scholar 

  28. Grgic J, Pickering C, Bishop DJ, Schoenfeld BJ, Mikulic P, Pedisic Z (2020) CYP1A2 genotype and acute effects of caffeine on resistance exercise, jum**, and sprinting performance. J Int Soc Sports Nutr 17(1):21. https://doi.org/10.1186/s12970-020-00349-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maffiuletti NA, Aagaard P, Blazevich AJ, Folland J, Tillin N, Duchateau J (2016) Rate of force development: physiological and methodological considerations. Eur J Appl Physiol 116(6):1091–1116. https://doi.org/10.1007/s00421-016-3346-6

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tillin NA, Pain MT, Folland J (2013) Explosive force production during isometric squats correlates with athletic performance in rugby union players. J Sports Sci 31(1):66–76. https://doi.org/10.1080/02640414.2012.720704

    Article  PubMed  Google Scholar 

  31. Behrens M, Mau-Moeller A, Weippert M, Fuhrmann J, Wegner K, Skripitz R, Bader R, Bruhn S (2015) Caffeine-induced increase in voluntary activation and strength of the quadriceps muscle during isometric, concentric and eccentric contractions. Sci Rep 5:10209. https://doi.org/10.1038/srep10209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bazzucchi I, Felici F, Montini M, Figura F, Sacchetti M (2011) Caffeine improves neuromuscular function during maximal dynamic exercise. Muscle Nerve 43(6):839–844. https://doi.org/10.1002/mus.21995

    Article  CAS  PubMed  Google Scholar 

  33. Black CD, Waddell DE, Gonglach AR (2015) Caffeine’s ergogenic effects on cycling: neuromuscular and perceptual factors. Med Sci Sports Exerc 47(6):1145–1158. https://doi.org/10.1249/MSS.0000000000000513

    Article  CAS  PubMed  Google Scholar 

  34. Trevino MA, Coburn JW, Brown LE, Judelson DA, Malek MH (2015) Acute effects of caffeine on strength and muscle activation of the elbow flexors. J Strength Cond Res 29(2):513–520. https://doi.org/10.1519/JSC.0000000000000625

    Article  PubMed  Google Scholar 

  35. Shield A, Zhou S (2004) Assessing voluntary muscle activation with the twitch interpolation technique. Sports Med 34(4):253–267. https://doi.org/10.2165/00007256-200434040-00005

    Article  PubMed  Google Scholar 

  36. Timmins TD, Saunders DH (2014) Effect of caffeine ingestion on maximal voluntary contraction strength in upper- and lower-body muscle groups. J Strength Cond Res 28(11):3239–3244. https://doi.org/10.1519/JSC.0000000000000447

    Article  PubMed  Google Scholar 

  37. Fryer MW, Neering IR (1989) Actions of caffeine on fast- and slow-twitch muscles of the rat. J Physiol 416:435–454. https://doi.org/10.1113/jphysiol.1989.sp017770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wondmikun Y, Soukup T, Asmussen G (2006) Effects of caffeine at different temperatures on contractile properties of slow-twitch and fast-twitch rat muscles. Physiol Res 55(6):641–652

    Article  CAS  PubMed  Google Scholar 

  39. Johnson MA, Polgar J, Weightman D, Appleton D (1973) Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci 18(1):111–129. https://doi.org/10.1016/0022-510x(73)90023-3

    Article  CAS  PubMed  Google Scholar 

  40. Wilk M, Krzysztofik M, Filip A, Zajac A, Del Coso J (2019) The effects of high doses of caffeine on maximal strength and muscular endurance in athletes habituated to caffeine. Nutrients. https://doi.org/10.3390/nu11081912

    Article  PubMed  PubMed Central  Google Scholar 

  41. Salatto RW, Arevalo JA, Brown LE, Wiersma LD, Coburn JW (2020) Caffeine’s effects on an upper-body resistance exercise workout. J Strength Cond Res 34(6):1643–1648. https://doi.org/10.1519/JSC.0000000000002697

    Article  PubMed  Google Scholar 

  42. Polito MD, Grandolfi K, de Souza DB (2019) Caffeine and resistance exercise: the effects of two caffeine doses and the influence of individual perception of caffeine. Eur J Sport Sci 19(10):1342–1348. https://doi.org/10.1080/17461391.2019.1596166

    Article  PubMed  Google Scholar 

  43. des Georges A, Clarke OB, Zalk R, Yuan Q, Condon KJ, Grassucci RA, Hendrickson WA, Marks AR, Frank J (2016) Structural basis for gating and activation of RyR1. Cell 167(1):145–157117. https://doi.org/10.1016/j.cell.2016.08.075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Krustrup P, Soderlund K, Relu MU, Ferguson RA, Bangsbo J (2009) Heterogeneous recruitment of quadriceps muscle portions and fibre types during moderate intensity knee-extensor exercise: effect of thigh occlusion. Scand J Med Sci Sports 19(4):576–584. https://doi.org/10.1111/j.1600-0838.2008.00801.x

    Article  CAS  PubMed  Google Scholar 

  45. Grgic J (2022) Effects of caffeine on isometric handgrip strength: a meta-analysis. Clin Nutr ESPEN 47:89–95. https://doi.org/10.1016/j.clnesp.2021.12.007

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the commitment and dedication to the testing of each of the 20 resistance-trained athletes that participated in this investigation. The authors also thank Samuel Játiva and Paola Gonzalo for their support during data collection.

Author information

Authors and Affiliations

Authors

Contributions

APL conceived the experiment and IRF, CF and APL designed the experiment. IRF, DV, CF and APL collected the data. CF and APL analyzed and interpreted the data. IRF, RD and APL drafted the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Carmen Ferragut.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest derived from the outcomes of this study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Fernández, I., Valadés, D., Dominguez, R. et al. Load and muscle group size influence the ergogenic effect of acute caffeine intake in muscular strength, power and endurance. Eur J Nutr 62, 1783–1794 (2023). https://doi.org/10.1007/s00394-023-03109-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-023-03109-9

Keywords

Navigation