Log in

Sesamol and sesame (Sesamum indicum) oil enhance macrophage cholesterol efflux via up-regulation of PPARγ1 and LXRα transcriptional activity in a MAPK-dependent manner

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Cholesterol clearance by macrophages is a vital process to eliminate excess cholesterol from the body. Internalization of modified cholesterol by macrophages triggers overexpression of peroxisome proliferator-activated receptor γ1 (PPARγ1) and liver X receptor α (LXRα), two transcription factors that are critically involved in macrophage cholesterol efflux. Recent studies demonstrate that oral administration of sesamol derivative (INV-403) and sesame oil leads to a significant attenuation of atherosclerosis in Watanabe heritable hyperlipidemic rabbits and LDLR−/− mice, respectively. However, the exact molecular mechanisms underlying such anti-atherogenic effects remain largely unrevealed.

Methods

Luciferase reporter assays were performed to assess the effects of sesamol and sesame oil on PPARγ1 and LXRα gene expression. The potential of sesamol and sesame oil to modulate cholesterol efflux was evaluated using 3H-cholesterol efflux assays.

Results

Sesamol and sesame oil treatments lead to a significant up-regulation of PPARγ1 and LXRα expression and transcriptional activity in a MAPK-dependent manner. Importantly, primary macrophages display a significantly enhanced cholesterol efflux potential upon treatment with sesamol and sesame oil, and this stimulatory effect is mediated by MAPK signaling.

Conclusions

Our findings suggest that the previously reported anti-atherogenic effects of sesamol and sesame oil could be attributed, at least in part, to enhanced PPARγ1 and LXRα expression and transcriptional activity leading to improved macrophage cholesterol efflux. Our study is novel in elucidating the molecular and cellular mechanisms underlying the protective effects of sesamol and sesame oil against atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lusis AJ (2000) Atherosclerosis. Nature 407:233–241

    Article  CAS  Google Scholar 

  2. Breslow JL (1997) Cardiovascular disease burden increases, NIH funding decreases. Nat Med 3:600–601

    Article  CAS  Google Scholar 

  3. Steinberg D (2002) Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime. Nat Med 8:1211–1217

    Article  CAS  Google Scholar 

  4. Majdalawieh A, Ro HS (2010) PPARgamma1 and LXRalpha face a new regulator of macrophage cholesterol homeostasis and inflammatory responsiveness, AEBP1. Nucl Recept Signal 8:e004

    Google Scholar 

  5. Ricote M, Huang J, Fajas L, Li A, Welch J, Najib J et al (1998) Expression of the peroxisome proliferator-activated receptor γ (PPARgamma) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein. Proc Natl Acad Sci USA 95:7614–7619

    Article  CAS  Google Scholar 

  6. Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM (1998) PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 93:241–252

    Article  CAS  Google Scholar 

  7. Langmann T, Klucken J, Reil M, Liebisch G, Luciani MF, Chimini G et al (1999) Molecular cloning of the human ATP-binding cassette transporter 1 (hABC1): evidence for sterol-dependent regulation in macrophages. Biochem Biophys Res Commun 257:29–33

    Article  CAS  Google Scholar 

  8. Venkateswaran A, Laffitte BA, Joseph SB, Mak PA, Wilpitz DC, Edwards PA et al (2000) Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXRα. Proc Natl Acad Sci USA 97:12097–12102

    Article  CAS  Google Scholar 

  9. Klucken J, Buchler C, Orso E, Kaminski WE, Porsch-Ozcurumez M, Liebisch G et al (2000) ABCG1 (ABC8), the human homolog of the Drosophila white gene, is a regulator of macrophage cholesterol and phospholipid transport. Proc Natl Acad Sci USA 97:817–822

    Article  CAS  Google Scholar 

  10. Kuhad A, Sachdeva AK, Chopra K (2009) Attenuation of renoinflammatory cascade in experimental model of diabetic nephropathy by sesamol. J Agric Food Chem 57(14):6123–6128

    Article  CAS  Google Scholar 

  11. Hsu DZ, Wan CH, Hsu HF, Lin YM, Liu MY (2008) The prophylactic protective effect of sesamol against ferric–nitrilotriacetate-induced acute renal injury in mice. Food Chem Toxicol 46(8):2736–2741

    Article  CAS  Google Scholar 

  12. Hsu DZ, Chu PY, Li YH, Liu MY (2008) Sesamol attenuates diclofenac-induced acute gastric mucosal injury via its cyclooxygenase-independent antioxidative effect in rats. Shock 30(4):456–462

    Article  CAS  Google Scholar 

  13. Chu PY, Hsu DZ, Hsu PY, Liu MY (2010) Sesamol down-regulates the lipopolysaccharide-induced inflammatory response by inhibiting nuclear factor-kappa B activation. Innate Immun 16(5):333–339

    Article  CAS  Google Scholar 

  14. Lu YC, Jayakumar T, Duann YF, Chou YC, Hsieh CY, Yu SY et al (2011) Chondroprotective role of sesamol by inhibiting MMPs expression via retaining NF-κB signaling in activated SW1353 cells. J Agric Food Chem 59(9):4969–4978

    Article  CAS  Google Scholar 

  15. Sharma AK, Bharti S, Bhatia J, Nepal S, Malik S, Ray R et al (2012) Sesamol alleviates diet-induced cardiometabolic syndrome in rats via up-regulating PPARγ, PPARα and e-NOS. J Nutr Biochem 23(11):1482–1489

    Article  CAS  Google Scholar 

  16. Satchithanandam S, Chanderbhan R, Kharroubi AT, Calvert RJ, Klurfeld D, Tepper SA et al (1996) Effect of sesame oil on serum and liver lipid profiles in the rat. Int J Vitam Nutr Res 66:386–392

    CAS  Google Scholar 

  17. Visavadiya NP, Narasimhacharya AV (2008) Sesame as a hypocholesteraemic and antioxidant dietary component. Food Chem Toxicol 46:1889–1895

    Article  CAS  Google Scholar 

  18. Biswas A, Dhar P, Ghosh S (2010) Antihyperlipidemic effect of sesame (Sesamum indicum L.) protein isolate in rats fed a normal and high cholesterol diet. J Food Sci 75:274–279

    Article  Google Scholar 

  19. Bhaskaran S, Santanam N, Penumetcha M, Parthasarathy S (2006) Inhibition of Atherosclerosis in Low density lipoprotein receptor-negative mice by sesame oil. J Med Food 9:487–490

    Article  CAS  Google Scholar 

  20. Hsu DZ, Li YH, Chien SP, Liu MY (2004) Effects of sesame oil on oxidative stress and hepatic injury after cecal ligation and puncture in rats. Shock 21(5):466–469

    Article  CAS  Google Scholar 

  21. Hsu DZ, Chien SP, Li YH, Chuang YC, Chang YC, Liu MY (2008) Sesame oil attenuates hepatic lipid peroxidation by inhibiting nitric oxide and superoxide anion generation in septic rats. JPEN J Parenter Enteral Nutr 32(2):154–159

    Article  CAS  Google Scholar 

  22. Periasamy S, Hsu DZ, Chandrasekaran VR, Liu MY (2013) Sesame oil accelerates healing of 2,4,6-trinitrobenzenesulfonic acid-induced acute colitis by attenuating inflammation and fibrosis. JPEN J Parenter Enteral Nutr 37(5):674–682

    Article  Google Scholar 

  23. Periasamy S, Hsu DZ, Chang PC, Liu MY (2014) Sesame oil attenuates nutritional fibrosing steatohepatitis by modulating matrix metalloproteinases-2, 9 and PPAR-γ. J Nutr Biochem 25(3):337–344

    Article  CAS  Google Scholar 

  24. Majdalawieh A, Ro HS (2010) Regulation of IkappaBalpha function and NF-kappaB signaling: AEBP1 is a novel proinflammatory mediator in macrophages. Mediators Inflamm 2010:823821

    Article  Google Scholar 

  25. Ying Z, Kherada N, Kampfrath T, Mihai G, Simonetti O, Desikan R et al (2011) A modified sesamol derivative inhibits progression of atherosclerosis. Arterioscler Thromb Vasc Biol 31(3):536–542

    Article  CAS  Google Scholar 

  26. Majdalawieh AF, Hmaidan R, Carr RI (2010) Nigella sativa modulates splenocyte proliferation, Th1/Th2 cytokine profile, macrophage function and NK anti-tumor activity. J Ethnopharmacol 131(2):268–275

    Article  CAS  Google Scholar 

  27. Bogachev O, Majdalawieh A, Pan X, Zhang L, Ro HS (2011) Adipocyte enhancer-binding protein 1 (AEBP1) (a novel macrophage proinflammatory mediator) overexpression promotes and ablation attenuates atherosclerosis in ApoE(−/−) and LDLR(−/−) mice. Mol Med 17(9–10):1056–1064

    CAS  Google Scholar 

  28. Majdalawieh A, Ro HS (2009) LPS-induced suppression of macrophage cholesterol efflux is mediated by adipocyte enhancer-binding protein 1. Int J Biochem Cell Biol 41(7):1518–1525

    Article  CAS  Google Scholar 

  29. Fajas L, Auboeuf D, Raspe E, Schoonjans K, Lefebvre AM, Saladin R et al (1997) The organization, promoter analysis, and expression of the human PPARγ gene. J Biol Chem 272:18779–18789

    Article  CAS  Google Scholar 

  30. Steffensen KR, Schuster GU, Parini P, Holter E, Sadek CM, Cassel T et al (2002) Different regulation of the LXRα promoter activity by isoforms of CCAAT/enhancer-binding proteins. Biochem Biophys Res Commun 293:1333–1340

    Article  CAS  Google Scholar 

  31. Kim JB, Wright HM, Wright M, Spiegelman BM (1998) ADD1/SREBP1 activates PPARγ through the production of endogenous ligand. Proc Natl Acad Sci USA 95:4333–4337

    Article  CAS  Google Scholar 

  32. Willy PJ, Umesono K, Ong ES, Evans RM, Heyman RA, Mangelsdorf DJ (1995) LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev 9:1033–1045

    Article  CAS  Google Scholar 

  33. Majdalawieh A, Zhang L, Ro HS (2007) Adipocyte enhancer-binding protein-1 promotes macrophage inflammatory responsiveness by up-regulating NF-kappaB via IkappaBalpha negative regulation. Mol Biol Cell 18(3):930–942

    Article  CAS  Google Scholar 

  34. He GP, Muise A, Li AW, Ro HS (1995) A eukaryotic transcriptional repressor with carboxypeptidase activity. Nature 378:92–96

    Article  CAS  Google Scholar 

  35. Majdalawieh A, Zhang L, Fuki IV, Rader DJ, Ro HS (2006) Adipocyte enhancer-binding protein 1 is a potential novel atherogenic factor involved in macrophage cholesterol homeostasis and inflammation. Proc Natl Acad Sci USA 103(7):2346–2351

    Article  CAS  Google Scholar 

  36. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  37. Eder K, Guan H, Sung HY, Francis SE, Crossman DC, Kiss-Toth E (2008) LDL uptake by monocytes in response to inflammation is MAPK dependent but independent of tribbles protein expression. Immunol Lett 116(2):178–183

    Article  CAS  Google Scholar 

  38. Yin R, Dong YG, Li HL (2006) PPARgamma phosphorylation mediated by JNK MAPK: a potential role in macrophage-derived foam cell formation. Acta Pharmacol Sin 27(9):1146–1152

    Article  CAS  Google Scholar 

  39. Yano M, Matsumura T, Senokuchi T, Ishii N, Murata Y, Taketa K et al (2007) Statins activate peroxisome proliferator-activated receptor gamma through extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase-dependent cyclooxygenase-2 expression in macrophages. Circ Res 100(10):1442–1451

    Article  CAS  Google Scholar 

  40. Taketa K, Matsumura T, Yano M, Ishii N, Senokuchi T, Motoshima H et al (2008) Oxidized low density lipoprotein activates peroxisome proliferator-activated receptor-alpha (PPARalpha) and PPARgamma through MAPK-dependent COX-2 expression in macrophages. J Biol Chem 283(15):9852–9862

    Article  CAS  Google Scholar 

  41. Bujold K, Rhainds D, Jossart C, Febbraio M, Marleau S, Ong H (2009) CD36-mediated cholesterol efflux is associated with PPARgamma activation via a MAPK-dependent COX-2 pathway in macrophages. Cardiovasc Res 83(3):457–464

    Article  CAS  Google Scholar 

  42. Mulay V, Wood P, Manetsch M, Darabi M, Cairns R, Hoque M et al (2013) Inhibition of mitogen-activated protein kinase Erk1/2 promotes protein degradation of ATP binding cassette transporters A1 and G1 in CHO and HuH7 cells. PLoS ONE 8(4):e62667

    Article  CAS  Google Scholar 

  43. Chang CC, Lu WJ, Ong ET, Chiang CW, Lin SC, Huang SY et al (2011) A novel role of sesamol in inhibiting NF-κB-mediated signaling in platelet activation. J Biomed Sci 18:93

    Article  CAS  Google Scholar 

  44. Vennila L, Pugalendi KV (2012) Efficacy of sesamol on plasma and tissue lipids in isoproterenol-induced cardiotoxicity in Wistar rats. Arch Pharm Res 35(8):1465–1470

    Article  CAS  Google Scholar 

  45. Kumar N, Mudgal J, Parihar VK, Nayak PG, Kutty NG, Rao CM (2013) Sesamol treatment reduces plasma cholesterol and triacylglycerol levels in mouse models of acute and chronic hyperlipidemia. Lipids 48(6):633–638

    Article  CAS  Google Scholar 

  46. Wu WH, Kang YP, Wang NH, Jou HJ, Wang TA (2006) Sesame ingestion affects sex hormones, antioxidant status, and blood lipids in postmenopausal woman. J Nutr 136:1270–1275

    CAS  Google Scholar 

  47. Korou LM, Agrogiannis G, Pantopoulou A, Vlachos IS, Iliopoulos D, Karatzas T et al (2010) Comparative antilipidemic effect of N-acetylcysteine and sesame oil administration in diet-induced hypercholesterolemic mice. Lipids Health Dis 9:23

    Article  Google Scholar 

  48. Jan KC, Ho CT, Hwang LS (2008) Bioavailability and tissue distribution of sesamol in rat. J Agric Food Chem 56(16):7032–7037

    Article  CAS  Google Scholar 

  49. Jan KC, Ho CT, Hwang LS (2009) Elimination and metabolism of sesamol, a bioactive compound in sesame oil, in rats. Mol Nutr Food Res 53(Suppl 1):S36–S43

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to Dr. Johan Auwerx (University Louis Pasteur, Strasbourg, France), Dr. Knut Steffensen (Karolinska Institute, Huddinge, Sweden), Dr. Bruce Spiegelman (Harvard Medical School, Massachusetts, USA), and Dr. David Mangelsdorf (Howard Hughes Medical Institute, Maryland, USA) for kindly providing us with pGL3-PPARγ1-luciferase, pGL3-LXRα-luciferase, pGL3-TK-PPRE-X3-luciferase, and pGL3-TK-LXRE-X3-luciferase reporter constructs, respectively. We thank Dr. Neale Ridgway (Dalhousie University, Nova Scotia, Canada) for providing us with lipoprotein-depleted FBS used in 3H-cholesterol efflux assays. This work was supported by a grant from the Canadian Institute of Health Research (CIHR) (Grant MOP-57675) to H.S. Ro and a Faculty Research Grant (FRG10-07) to A. Majdalawieh.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin F. Majdalawieh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majdalawieh, A.F., Ro, HS. Sesamol and sesame (Sesamum indicum) oil enhance macrophage cholesterol efflux via up-regulation of PPARγ1 and LXRα transcriptional activity in a MAPK-dependent manner. Eur J Nutr 54, 691–700 (2015). https://doi.org/10.1007/s00394-014-0747-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-014-0747-3

Keywords

Navigation