Log in

Convection-permitting modeling strategies for simulating extreme rainfall events over Southeastern South America

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A set of six convection-permitting (CP) domain configurations were implemented to perform 72-hour long simulations of three extreme precipitation events over Southeastern South America (SESA). The goal of the study is to determine the most adequate configuration for reproducing not only the rainfall evolution and intensity, but also the synoptic triggering mechanisms that led to these extreme events, taking into account the trade-off between model performance and computational cost. This study assesses the impact of (1) the horizontal resolution in the CP domain, (2) the horizontal resolution of the driver domain, (3) the size of both CP and driver domains and (4) the nesting strategy (one-step versus two-step nesting). Each simulation was performed with the Weather Research and Forecasting model driven by the ERA-Interim reanalysis. For each event and domain configuration, a 6-member physics ensemble is built, making a total of 36 simulations for each event. No significant differences were found between the 4 km and 2.4 km CP ensembles. Increasing the horizontal resolution of the driver domain from 20 km to 12 km introduced only subtle differences. Increasing the size of the CP domain improved the model performance, probably because of better resolved topography and, hence, better resolved synoptic environment. The results in this study reveal that the one-step nesting CP ensemble at 4 km horizontal resolution covering an area of \(29^\circ\)x \(21^\circ\) (lon-lat) arises as the optimal domain configuration among these tested to simulate extreme precipitation events over SESA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  • Ban N, Schmidli J, Schär C (2015) Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster? Geophys Res Lett 42. https://doi.org/10.1002/2014GL062588

  • Ban N, Rajczak J, Schmidli J, Schär C (2020) Analysis of alpine precipitation extremes using generalized extreme value theory in convection-resolving climate simulations. Climate Dyn 55. https://doi.org/10.1007/s00382-018-4339-4

  • Ban N, Caillaud C, Coppola E, Pichelli E, Sobolowski S, Adinolfi M, Ahrens B, Alias A, Anders I, Bastin S, Belus̆ić D, Berthou S, Brisson E, Cardoso R, Chan S, Christensen O, Fernández J, Fita L, Frisius T, Zander M, (2021) The first multi-model ensemble of regional climate simulations at kilometer-scale resolution, part i: evaluation of precipitation. Clim Dyn. https://doi.org/10.1007/s00382-021-05708-w

  • Beck H, Vergopolan N, Pan M, Levizzani V, van Dijk A, Weedon G, Brocca L, Pappenberger F, Huffman G, Wood E (2017) Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol Earth Syst Sci 21:6201–6217. https://doi.org/10.5194/hess-21-6201-2017

    Article  Google Scholar 

  • Beck H, Wood E, Pan M, Fisher C, Miralles D, van Dijk A, McVicar T, Adler R (2018) MSWEP v2 global 3-hourly 0.1\(^\circ\) precipitation: Methodology and quantitative assessment. Bull Am Meteorol Soc 100. https://doi.org/10.1175/BAMS-D-17-0138.1

  • Berthou S, Kendon E, Chan S, Ban N, Leutwyler D, Schär C, Fosser G (2020) Pan-european climate at convection-permitting scale: a model intercomparison study. Clim Dyn 55. https://doi.org/10.1007/s00382-018-4114-6

  • Bettolli M, Solman S, Rocha R, Llopart M, Gutierrez J, Fernández J, Olmo M, Lavín Gullón A, Chou S, Carneiro Rodrigues D, Coppola E, Balmaceda-Huarte R, Barreiro M, Blazquez J, Doyle M, Feijoó M, Huth R, Machado L, Vianna Cuadra S (2021) The CORDEX Flagship Pilot Study in southeastern South America: a comparative study of statistical and dynamical downscaling models in simulating daily extreme precipitation events. Clim Dyna 56:3. https://doi.org/10.1007/s00382-020-05549-z

    Article  Google Scholar 

  • Blazquez J, Solman S (2020) Multiscale precipitation variability and extremes over South America: analysis of future changes from a set of CORDEX regional climate model simulations. Clim Dyn 55. https://doi.org/10.1007/s00382-020-05370-8

  • Brisson E, Demuzere M, Nicole V (2015) Modelling strategies for performing convective permitting climate simulations. Meteorologische Zeitschrift 25. https://doi.org/10.1127/metz/2015/0598

  • Cerón W, Kayano M, Andreoli R, Avila-Diaz A, Ayes I, Freitas E, Martins J, Souza R (2020) Recent intensification of extreme precipitation events in the La Plata Basin in Southern South America (1981–2018). Atmosp Res. https://doi.org/10.1016/j.atmosres.2020.105299

    Article  Google Scholar 

  • Chou SC, Lyra A, Mourão C, Dereczynski C, Pilotto I, Gomes J, Bustamante J, Tavares P, Silva A, Rodrigues D, Campos D, Chagas D, Medeiros G, Siqueira G, Marengo J (2014) Assessment of climate change over South America under RCP 4.5 and 8.5 downscaling scenarios. Am J Clim Change 03:512–527. https://doi.org/10.4236/ajcc.2014.35043

    Article  Google Scholar 

  • Coppola E, Sobolowski S, Pichelli E, Raffaele F, Ahrens B, Anders I, Ban N, Bastin S, Belda M, Belusic D, Caldas-Alvarez A, Cardoso R, Davolio S, Dobler A, Fernández J, Fita L, Fumiere Q, Giorgi F, Goergen K, Warrach-Sagi K (2020) A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean. Climate Dynamics 55. https://doi.org/10.1007/s00382-018-4521-8

  • Cui W, Dong X, ** B, Feng Z, Fan J (2019) Can the GPM IMERG Final Product accurately represent MCSs’ precipitation characteristics over the central and eastern United States? J Hydrometeorol 21. https://doi.org/10.1175/JHM-D-19-0123.1

  • ...Dee D, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy S, Hersbach H, Hólm EV, Isaksen L, Kallberg P, Kohler M, Matricardi M, McNally AP, Monge-Sanz BM, Morchette J, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  • Demaria E, Rodriguez D, Ebert E, Salio P, Su F, Valdes J (2011) Evaluation of mesoscale convective systems in South America using multiple satellite products and an object-based approach. J Geophys Rese-Atmosp 116. https://doi.org/10.1029/2010jd015157

  • Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. Journal of The Atmospheric Sciences 46:3077–3107. https://doi.org/10.1175/1520-0469(1989)046\(<\)3077:NSOCOD\(>\)2.0.CO;2

  • Falco M, Carril A, Menéndez C, Zaninelli P, Li L (2019) Assessment of CORDEX simulations over South America: added value on seasonal climatology and resolution considerations. Clim Dyn 52. https://doi.org/10.1007/s00382-018-4412-z

  • Fantini A, Raffaele F, Torma C, Bacer S, Coppola E, Giorgi F, Ahrens B, Dubois C, Sanchez E, Verdecchia M (2018) Assessment of multiple daily precipitation statistics in ERA-Interim driven Med-CORDEX and EURO-CORDEX experiments against high resolution observations. Clim Dyn 51. https://doi.org/10.1007/s00382-016-3453-4

  • Fosser G, Khodayar Pardo S, Berg P (2014) Benefit of convection permitting climate model simulations in the representation of convective precipitation. Clim Dyn 44:45–60. https://doi.org/10.1007/s00382-014-2242-1

    Article  Google Scholar 

  • Fosser G, Khodayar S, Berg P (2016) Climate change in the next 30 years: What can a convection-permitting model tell us that we did not already know? Clim Dyn. https://doi.org/10.1007/s00382-016-3186-4

    Article  Google Scholar 

  • Grell G, Freitas S (2014) A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmospheric Chemistry and Phys Discussions 13. https://doi.org/10.5194/acp-14-5233-2014

  • Herrera García S, Fernández J, Gutiérrez J (2016) Update of the spain02 gridded observational dataset for euro-cordex evaluation: Assessing the effect of the interpolation methodology. Int J Climatol 36. https://doi.org/10.1002/joc.4391

  • Hersbach H, Bell B, Berrisford P, Horányi A, Sabater JM, Nicolas J, Radu R, Schepers D, Simmons A, Soci C, Dee D (2019) Global reanalysis: goodbye ERA-Interim, hello ERA5. ECMWF Newsletter 156. https://doi.org/10.21957/vf291hehd7

  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M, Thépaut JN (2020) The ERA5 global reanalysis. Q J R Meteorol Soc. https://doi.org/10.1002/qj.3803

    Article  Google Scholar 

  • Hibino K, Takayabu I, Wakazuki Y, Ogata T (2018) Physical responses of convective heavy rainfall to future warming condition: case study of the Hiroshima event. Front Earth Sci 6. https://doi.org/10.3389/feart.2018.00035

  • Hong SY, Jang J (2018) Impacts of shallow convection processes on a simulated boreal summer climatology in a global atmospheric model. Asia-Pacific J Atmosp Sci 54:361–370. https://doi.org/10.1007/s13143-018-0013-3

    Article  Google Scholar 

  • Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134. https://doi.org/10.1175/MWR3199.1

  • Huffman G, Bolvin D, Nelkin E, Adler R (2011) Highlights of Version 7 TRMM Multi-satellite Precipitation Analysis (TMPA). In: 5th Internat Precip Working Group Workshop, Workshop Program and Proceedings, pp 109–110

  • Huffman G, Stocker E, Bolvin D, Nelkin E, Jackson T (2019) GPM IMERG Final Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V06, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC). https://doi.org/10.5067/GPM/IMERG/3B-HH/06

  • Janjic Z (1994) The step-mountain eta coordinate model: Further development of the convection, viscous sublayer, and turbulent closure schemes. Mon Weather Rev 122:927–945. https://doi.org/10.1175/1520-0493(1994)122\(<\)0927:TSMECM\(>\)2.0.CO;2

  • Janjic Z (2002) Nonsingular implementation of the Mellor–Yamada Level 2.5 scheme in the NCEP meso model. NCEP Office Note 436

  • Jimenez P, Dudhia J, González Rouco JF, Navarro J, Montávez J, Garcia Bustamante E (2012) A revised scheme for the WRF surface layer formulation. Mon Weather Rev 140. https://doi.org/10.1175/MWR-D-11-00056.1

  • Joyce R, Janowiak J, Arkin P, **e P (2004) CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J Hydrometeorol 5. https://doi.org/10.1175/1525-7541(2004)005\(<\)0487:CAMTPG\(>\)2.0.CO;2

  • Kain J (2004) The Kain-Fritsch convective parameterization: An update. J Appl Meteorol 43:170–181. https://doi.org/10.1175/1520-0450(2004)04360;0170:tkcpau62;2.0.co;2

    Article  Google Scholar 

  • Kendon E, Roberts NM, Senior CA, Roberts MJ (2012) Realism of rainfall in a very high-resolution regional climate model. J Clim 25(17):5791–5806. https://doi.org/10.1175/JCLI-D-11-00562.1

    Article  Google Scholar 

  • Kendon E, Roberts N, Fowler H, Roberts M, Chan S, Senior C (2014) Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat Clim Change 4:570–576. https://doi.org/10.1038/nclimate2258

    Article  Google Scholar 

  • Kendon E, Ban N, Roberts N, Fowler H, Roberts M, Chan S, Evans J, Fosser G, Wilkinson J (2016) Do convection-permitting regional climate models improve projections of future precipitation change? Bulletin of the American Meteorological Society 98. https://doi.org/10.1175/BAMS-D-15-0004.1

  • Lavín Gullón A, Feijoó M, Solman S, Fernández J, Rocha R, Bettolli M (2021) Synoptic forcing associated with extreme precipitation events over Southeastern South America as depicted by a CORDEX FPS set of convection-permitting RCMs. Clim Dyn 56. https://doi.org/10.1007/s00382-021-05637-8

  • Li J, Chen H, Rong X, Su J, **n Y, Furtado K, Milton S, Li N (2018) How well can a climate model simulate an extreme precipitation event: A case study using the Transpose-AMIP experiment. J Clim 31. https://doi.org/10.1175/JCLI-D-17-0801.1

  • Li P, Guo Z, Furtado K, Chen H, Li J, Milton S, Field P, Zhou T (2019) Prediction of heavy precipitation in the eastern China flooding events of 2016: Added value of convection-permitting simulations. Q J R Meteorol Soc 145. https://doi.org/10.1002/qj.3621

  • Lim KS, Hong SY (2010) Development of an effective Double-Moment Cloud Microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon Wea Rev 138:1587–1612. https://doi.org/10.1175/2009MWR2968.1

    Article  Google Scholar 

  • Liu C, Ikeda K, Rasmussen R, Barlage M, Newman A, Prein A, Chen L, Clark M, Dai A, Dudhia J, Eidhammer T, Gochis D, Gutmann E, Kurkute S, Li Y, Thompson G, Yates D (2017) Continental-scale convection-permitting modeling of the current and future climate of North America. Clim Dyn 49. https://doi.org/10.1007/s00382-016-3327-9

  • Lucas-Picher P, Argüeso D, Brisson E, Tramblay Y, Berg P, Lemonsu A, Kotlarski S, Caillaud C (2021) Convection-permitting modeling with regional climate models: Latest developments and next steps. Wiley Interdisciplinary Reviews: Climate Change (July):1–59. https://doi.org/10.1002/wcc.731

  • Mahoney K, Thompson G, Barsugli JJ, Scott JD, Alexander M (2012) Changes in hail and flood risk in high-resolution simulations over Colorado’s mountains. Nat Clim Change 2. https://doi.org/10.1038/nclimate1344

  • Matsudo C, Salio P (2011) Severe weather reports and proximity to deep convection over Northern Argentina. Atmosp Res 100:523–537. https://doi.org/10.1016/j.atmosres.2010.11.004

    Article  Google Scholar 

  • Matsudo C, García Skabar Y, Ruiz J, Vidal L, Salio P (2015) Verification of WRF-ARW convective-resolving forecasts over Southeastern South America. Mausam 66:445–456

    Article  Google Scholar 

  • Matsui T, Zhang S, Lang S, Tao WK, Ichoku C, Peters-Lidard C (2020) Impact of radiation frequency, precipitation radiative forcing, and radiation column aggregation on convection-permitting West African monsoon simulations. Clim Dyn 55. https://doi.org/10.1007/s00382-018-4187-2

  • Matte D, Laprise R, Thériault JM, Lucas-Picher P (2017) Spatial spin-up of fine scales in a regional climate model simulation driven by low-resolution boundary conditions. Clim Dyn 49:1–12. https://doi.org/10.1007/s00382-016-3358-2

    Article  Google Scholar 

  • Mlawer E, Taubman S, Brown P, Iacono M, Clough S (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:16663–16682. https://doi.org/10.1029/97JD00237

    Article  Google Scholar 

  • Nakanishi M, Niino H (2009) Development of an improved turbulence closure model for the atmospheric boundary layer. J Meteorol Soc Jpn 87:895–912. https://doi.org/10.2151/jmsj.87.895

    Article  Google Scholar 

  • Olmo M, Bettolli M (2021) Extreme daily precipitation in southern South America: statistical characterization and circulation types using observational datasets and regional climate models. Clim Dyn. https://doi.org/10.1007/s00382-021-05748-2

    Article  Google Scholar 

  • Olmo M, Bettolli M, Rusticucci M (2020) Atmospheric circulation influence on temperature and precipitation individual and compound daily extreme events: Spatial variability and trends over southern South America. Wea Clim Extremes 29:100267. https://doi.org/10.1016/j.wace.2020.100267

    Article  Google Scholar 

  • Pall P, Patricola C, Wehner M, Stone D, Paciorek C, Collins W (2017) Diagnosing conditional anthropogenic contributions to heavy Colorado rainfall in September 2013. Wea Clim Extremes 17. https://doi.org/10.1016/j.wace.2017.03.004

  • Penalba O, Robledo F (2010) Spatial and temporal variability of the frequency of extreme daily rainfall regime in the La Plata Basin during the 20th century. Clim Change 98:531–550. https://doi.org/10.1007/s10584-009-9744-6

    Article  Google Scholar 

  • Pichelli E, Coppola E, Sobolowski S, Ban N, Giorgi F, Stocchi P, Alias A, Belušić D, Berthou S, Caillaud C, Cardoso R, Chan S, Christensen O, Dobler A, de Vries H, Goergen K, Kendon E, Keuler K, Lenderink G, Vergara-Temprado J (2021) The first multi-model ensemble of regional climate simulations at kilometer-scale resolution part 2: historical and future simulations of precipitation. Clim Dyn 56. https://doi.org/10.1007/s00382-021-05657-4

  • Prein A, Gobiet A, Suklitsch M, Truhetz H, Awan N, Keuler K, Georgievski G (2013) Added value of convection permitting seasonal simulations. Climate Dynamics 41. https://doi.org/10.1007/s00382-013-1744-6

  • Prein A, Langhans W, Fosser G, Ferrone A, Ban N, Goergen K, Keller M, Tölle M, Gutjahr O, Feser F, Brisson E, Kollet S, Schmidli J, van Lipzig PM, N, Leung L, (2015) A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev Geophys 53. https://doi.org/10.1002/2014RG000475

  • Prein A, Liu C, Ikeda K, Bullock R, Rasmussen R, Holland G, Clark M (2020) Simulating North American mesoscale convective systems with a convection-permitting climate model. Clim Dyn 55. https://doi.org/10.1007/s00382-017-3993-2

  • Prein A, Rasmussen R, Castro C, Dai A, Minder J (2020) Special issue: Advances in convection-permitting climate modeling. Clim Dyn 55. https://doi.org/10.1007/s00382-020-05240-3

  • Rasmussen K, Houze R (2016) Convective initiation near the Andes in subtropical South America. Mon Wea Rev 144. https://doi.org/10.1175/MWR-D-15-0058.1

  • Rasmussen K, Chaplin MM, Zuluaga MD, Houze RA (2016) Contribution of extreme convective storms to rainfall in South America. J Hydrometeorol 17(1):353–367. https://doi.org/10.1175/JHM-D-15-0067.1

    Article  Google Scholar 

  • Rasmussen K, Prein A, Rasmussen R, Ikeda K, Liu C (2020) Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the United States. Clim Dyn 55. https://doi.org/10.1007/s00382-017-4000-7

  • Roberts NM, Lean HW (2008) Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon Wea Rev 136(1):78–97. https://doi.org/10.1175/2007MWR2123.1

    Article  Google Scholar 

  • Romatschke U, Houze R (2013) Characteristics of precipitating convective systems accounting for the summer rainfall of tropical and subtropical South America. J Hydrometeorol 14:25–46. https://doi.org/10.1175/JHM-D-12-060.1

    Article  Google Scholar 

  • Salio P, Nicolini M, Zipser E (2007) Mesoscale convective systems over southeastern south america and their relationship with the South American Low-Level Jet. Mon Wea Rev 135. https://doi.org/10.1175/MWR3305.1

  • Salio P, Hobouchian M, García Skabar Y, Vila D (2014) Evaluation of high-resolution satellite precipitation estimates over southern South America using a dense rain gauge network. Atmosp Res 163. https://doi.org/10.1016/j.atmosres.2014.11.017

  • Skamarock W, Klemp J, Dudhia J, O Gill D, Barker D, Wang W, G Powers J (2008) A description of the Advanced Research WRF Version 3. NCAR Technical Note NCAR/TN-468+STR. https://doi.org/10.5065/D68S4MVH

  • Solman S (2016) Systematic temperature and precipitation biases in the CLARIS-LPB ensemble simulations over South America and possible implications for climate change projections. Clim Res 68. https://doi.org/10.3354/cr01362

  • Solman S, Blazquez J (2019) Multiscale precipitation variability over South America: aAnalysis of the added value of CORDEX RCM simulations. Clim Dyn. https://doi.org/10.1007/s00382-019-04689-1

    Article  Google Scholar 

  • Solman S, Sanchez E, Samuelsson P, da Rocha RP, Li L, Marengo J, Pessacg N, Remedio AR, Chou SC, Berbery H, Le Treut H, de Castro M, Jacob D (2013) Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-Interim reanalysis: Model performance and uncertainties. Clim Dyn 41. https://doi.org/10.1007/s00382-013-1667-2

  • Solman S, Bettolli M, Doyle M, Olmo M, Feijoó M, Martinez D, Blazquez J, Balmaceda-Huarte R (2021) Evaluation of multiple downscaling tools for simulating extreme precipitation events over Southeastern South America: a case study approach. Clim Dyn 1–24. https://doi.org/10.1007/s00382-021-05770-4

  • Tewari M, Wang W, Dudhia J, LeMone M, Mitchell K, Ek M, Gayno G, Wegiel J, Cuenca R (2016) Implementation and verification of the united NOAH land surface model in the wrf model 11–15

  • Torma C, Giorgi F, Coppola E (2015) Added value of regional climate modeling over areas characterized by complex terrain-precipitation over the Alps. J Geophys Res 120(9):3957–3972. https://doi.org/10.1002/2014JD022781

    Article  Google Scholar 

  • Vörösmarty C, Bravo de Guenni L, Wollheim W, Pellerin B, Bjerklie D, Cardoso M, D’Almeida C, Green P, Colon L (2013) Extreme rainfall, vulnerability and risk: a continental-scale assessment for South America. Philosoph Trans Ser A Math Phys Eng Sci 371:20120408. https://doi.org/10.1098/rsta.2012.0408

    Article  Google Scholar 

  • Yang Q, Houze R, Leung L, Feng Z (2017) Environments of long-lived mesoscale convective systems over the central United States in convection permitting climate simulations. J Geophys Res 122. https://doi.org/10.1002/2017jd027033

  • Yun Y, Liu C, Luo Y, Liang X, Huang L, Chen F, Rasmmusen R (2020) Convection-permitting regional climate simulation of warm-season precipitation over eastern China. Clim Dyn 54. https://doi.org/10.1007/s00382-019-05070-y

  • Zipser E, Cecil JD, Liu C, Nesbitt S, Yorty D (2006) Where are the most intense thunderstorms on Earth? Bull Am Meteorol Soc 87. https://doi.org/10.1175/BAMS-87-8-1057

Download references

Acknowledgements

This study has been supported UBACYT2018 Grant 20020170100117BA and FONCYT Grant PICT2018-02496. The authors are grateful for constructive comments by two anonymous reviewers who helped improving the manuscript.

Funding

This study has been supported UBACYT2018 Grant 20020170100117BA and FONCYT Grant PICT2018-02496.

Author information

Authors and Affiliations

Authors

Contributions

All authors included in the authors list have contributed on different aspects of the manuscript.

Corresponding author

Correspondence to Martín Feijoó.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 11430 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feijoó, M., Solman, S. Convection-permitting modeling strategies for simulating extreme rainfall events over Southeastern South America. Clim Dyn 59, 2549–2569 (2022). https://doi.org/10.1007/s00382-022-06226-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-022-06226-z

Keywords

Navigation