Log in

Indo-Pacific climate during the decaying phase of the 2015/16 El Niño: role of southeast tropical Indian Ocean warming

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study investigates the influence of southeast tropical Indian Ocean (SETIO) sea surface temperature (SST) warming on Indo-Pacific climate during the decaying phase of the 2015/16 El Niño by using observations and model experiments. The results show that the SETIO SST warming in spring 2016 enhanced local convection and forced a “C-shape” wind anomaly pattern in the lower troposphere. The “C-shape” wind anomaly pattern over the eastern tropical Indian Ocean consists of anomalous westerly flow south of the equator and anomalous easterly flow north of the equator. The anomalous easterly flow then extended eastward into the western North Pacific (WNP) and facilitates the development or the maintenance of an anomalous anticyclone over the South China Sea (SCS). Correspondingly, the eastern part of the Bay of Bengal, the SCS and the WNP suffered less rainfall. Such precipitation features and the associated “C-shape” wind anomaly pattern shifted northward about five latitudes in summer 2016. Additionally, the SETIO warming can induce local meridional circulation anomalies, which directly affect Indo-Pacific climate. Numerical model experiments further confirm that the SETIO SST warming plays an important role in modulating Indo-Pacific climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Chen W (2002) Impacts of El Niño and La Niña on the cycle of the East Asian winter and summer monsoon. Chin J Atmos Sci (Chinese) 26:595–610

    Google Scholar 

  • Chen Z, Wen Z, Wu R, Zhao P, Cao J (2014) Influence of two types of El Niños on the East Asian climate during boreal summer: a numerical study. Clim Dyn 43:469–481. doi:10.1007/s00382-013-1943-1

    Article  Google Scholar 

  • Chen Z, Wen Z, Wu R, Lin X, Wang J (2016a) Relative importance of tropical SST anomalies in maintaining the western north pacific anomalous anticyclone during El Niño to La Niña transition years. Clim Dyn 46:1027–1041. doi:10.1007/s00382-015-2630-1

    Article  Google Scholar 

  • Chen J, Wen Z, Wang X (2016b) Analysis of winter and spring precipitation over Southern China during 2015/2016 extreme El Niño. Trans Atmos Sci (Chinese) 39:813–826 b)

    Google Scholar 

  • Chou C, Huang L-F, Tu J-Y, Tseng L, Hsueh Y-C (2009) El Niño impacts on precipitation in the western North Pacifc-East Asian sector. J Clim 22:2039–2057

    Article  Google Scholar 

  • Du Y, **e S-P, Huang G, Hu K-M (2009) Role of air-sea interaction in the long persistence of El Nino-induced North Indian Ocean warming. J Clim 22:2023–2038

    Article  Google Scholar 

  • Du Y, Yang L, **e S-P (2011) Tropical Indian Ocean influence on Northwest Pacific tropical cyclones in summer following strong El Nino. J Clim 24:315–322

    Article  Google Scholar 

  • Fan L, Shin S-I, Liu Q, Liu Z (2013) Relative Importance of Tropical SST anomalies in forcing East Asian summer monsoon circulation. Geophys Res Lett 40:2471–2477. doi:10.1002/grl.50494

    Article  Google Scholar 

  • Gent PR, Danabasoglu G, Donner LJ et al (2011) The Community climate system model version 4. J Clim 24: 4973–4991. doi:10.1175/2011JCLI4083.1

    Article  Google Scholar 

  • He Z, Wu R (2014) Indo-Pacific remote forcing in summer rainfall variability over the South China Sea. Clim Dyn 42:2323–2337. doi:10.1007/s00382-014-2123-7

    Article  Google Scholar 

  • He Z, Wu R, Wang W (2015) Signals of the South China Sea summer rainfall variability in the Indian Ocean. Clim Dyn 46:3181–3195. doi:10.1007/s00382-015-2760-5

    Article  Google Scholar 

  • Hu KM, Huang G, Huang RH (2011) The impact of tropical Indian Ocean variability on summer surface air temperature in China. J Clim 24:5365–5377

    Article  Google Scholar 

  • Hu W, Wu R, Liu Y (2014) Relation of the South China Sea precipitation variability to tropical indo-pacific SST anomalies during spring-to-summer transition. J Clim 27:5451–5467

    Article  Google Scholar 

  • Huang R-H, Wu Y-F (1989) The influence of ENSO on the summer climate change in China and its mechanism. Adv Atmos Sci 6:21–32

    Article  Google Scholar 

  • Hurrell JW, Hack JJ, Shea D, Caron JM, Rosinski J (2008) A new sea surface temperature and sea ice boundary dataset for community atmosphere model. J Clim 21:5145–5153. doi:10.1175/2008JCLI2292.1

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77:437–471

    Article  Google Scholar 

  • Klein SA, Soden BJ, Lau N-C (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12:917–932

    Article  Google Scholar 

  • Kosaka Y, **e S-P, Lau N-C, Vecchi GA (2013) Origin of seasonal predictability for summer climate over the Northwestern Pacific. Proc Natl Acad Sci 110:7574–7579

    Article  Google Scholar 

  • Lau N-C, Nath MJ (2003) Atmosphere–ocean variations in the Indo Pacific sector during ENSO episodes. J Clim 16:3–20

    Article  Google Scholar 

  • Lee EJ, Yeh SW, Jhun JG, Moon BK (2006) Seasonal change in anomalous WNPSH associated with the strong East Asian summer monsoon. Geophy Res Lett 33:L21702. doi:10.1029/2006GL027474

    Article  Google Scholar 

  • Lin SJ (2004) A ‘‘vertically Lagrangian’’ finite-volume dynamical core for global models. Mon Wea Rev 132: 2293–2307. doi:10.1175/1520-0493(2004)132,2293:AVLFDC.2.0.CO;2

    Article  Google Scholar 

  • Liu Z, Alexander MA (2007) Atmospheric bridge, oceanic tunnel and global climatic teleconnections. Rev Geophys 45:RG2005. doi:10.1029/2005RG000172

    Article  Google Scholar 

  • Neale RB, Richter J, Park S, Lauritzen PH, Vavrus SJ, Rasch PJ, Zhang M (2013) The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J Clim 26:5150–5168. doi:10.1175/JCLI-D-12-00236.1

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophy Res-Atmos. doi:10.1029/2002JD002670

    Google Scholar 

  • Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon Wea Rev 115:1606–1626

    Article  Google Scholar 

  • Taylor KE, Williamson D, Zwiers F (2000) The sea surface temperature and sea-ice concentration boundary conditions for AMIP II simulations. PCMDI Rep 60:28. http://www-pcmdi.llnl.gov/publications/ab60.html.

  • Trenberth KE, Branstator GW, Karoly D, Kumar A, Lau N-C, Ropelewski CW (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res 103(C7):14291–14324

    Article  Google Scholar 

  • Wang B (1992) The vertical structure and development of the ENSO anomaly mode during 1979–1989. J Atmos Sci 49:698–712

    Article  Google Scholar 

  • Wang C (2002) Atmospheric circulation cells associated with the El Nino Southern Oscillation. J Clim 15:399–419

    Article  Google Scholar 

  • Wang C, Weisberg RH (2000) The 1997-98 El Niño evolution relative to previous El Niño events. J Clim 13:488–501

    Article  Google Scholar 

  • Wang C, Weisberg RH, Virmani J (1999) Western Pacific interannual variability associated with the El Niño-Southern Oscillation. J Geophys Res 104:5131–5149

    Article  Google Scholar 

  • Wang B, Wu R, Fu X (2000) Pacific-East Asian teleconnection: how does ENSO affect East Asian climate? J Clim 13:1517–1536

    Article  Google Scholar 

  • Wang C, Wang W, Wang D, Wang Q (2006) Interannual variability of the South China Sea associated with El Niño. J Geophy Res 111: C03023, doi:10.1029/2005JC003333

    Google Scholar 

  • Webster PJ, Magana VO, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res 103:14451–14510

    Article  Google Scholar 

  • Weisberg RH, Wang C (1997) A western Pacific oscillator paradigm for the El Niño-Southern Oscillation. Geophys Res Lett 24:779–782

    Article  Google Scholar 

  • Wu R, Yeh SW (2010) A further study of the tropical Indian Ocean asymmetric mode in boreal spring. J Geophys Res 115:D08101. doi:10.1029/2009JD012999

    Google Scholar 

  • Wu R, Hu Z-Z, Kirtman BP (2003) Evolution of ENSO related rainfall anomalies in East Asia. J Clim 16:3742–3758

    Article  Google Scholar 

  • Wu R, Kirtman BP, Krishnamurthy V (2008) An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring. J Geophys Res 113:D05104. doi:10.1029/2007JD009316

    Google Scholar 

  • Wu B, Li T, Zhou T-J (2010) Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the Western North Pacifc anomalous anticyclone during the El Niño Decaying Summer. J Clim 23:2974–2986

    Article  Google Scholar 

  • Wu R, Yang S, Wen Z, Huang G, Hu K (2012) Interdecadal change in the relationship of southern China summer rainfall with tropical Indo-Pacific SST. Theor Appl Climatol 108:119–133. doi:10.1007/s00704-011-0519-4

    Article  Google Scholar 

  • **e P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteor Soc 78:2539–2558

    Article  Google Scholar 

  • **e S-P, Carton JA (2004) Tropical Atlantic variability: patterns, mechanisms, and impacts. Earth’s climate: the ocean–atmosphere interaction. Geophys Monogr 147:121–142

    Google Scholar 

  • **e S-P, Zhou ZQ (2017) Seasonal modulations of El Niño-related atmospheric variability: Indo-western Pacific ocean feedback. J Clim. doi:10.1175/JCLI-D-16-0713.1

    Google Scholar 

  • **e S-P, Annamalai H, Schott FA, McCreary JP (2002) Structure and mechanisms of south Indian Ocean climate variability. J Clim 15:867–878

    Article  Google Scholar 

  • **e S-P, Hu KM, Hafner J, Tokinaga H, Du Y, Huang G, Sampe T (2009) Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño. J Clim 22:730–747

    Article  Google Scholar 

  • **e S-P, Kosaka Y, Du Y, Hu KM, Chowdary J, Huang G (2016) Indowestern Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: a review. Adv Atmos Sci 33:411–432. doi:10.1007/s00376-015-5192-6

    Article  Google Scholar 

  • Yang J, Liu Q, **e S-P, Liu Z, Wu L (2007) Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys Res Lett 34:L02708. doi:10.1029/2006GL028571

    Google Scholar 

  • Yim SY, Yeh SW, Wu R, Jhun JG (2008) The Influence of ENSO on decadal variations in the relationship between the East Asian and Western North pacific summer monsoons. J Clim 21:3165–3179

    Article  Google Scholar 

  • Yu L, ** X, Weller RA (2008) Multidecade Global Flux Datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project: latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution, OAFlux Project Tech. Rep. OA-2008-01, p 64

  • Zhai P, Yu R, Guo Y, Li Q, Ren X, Wang Y, Xu W, Liu Y, Ding Y (2016) The strong El Niño in 2015/2016 and its dominant impacts on global and China’s climate. Acta Meteorol Sin (Chinese) 74:309–321. doi:10.11676/qxxb2016.049

    Google Scholar 

  • Zhan R, Wang Y, Lei X (2011) Contributions of ENSO and East Indian Ocean SSTA to the interannual variability of Northwest Pacific tropical cyclone frequency. J Clim 24:509–521

    Article  Google Scholar 

  • Zhan R, Wang Y, Tao L (2014) Intensified Impact of East Indian Ocean SST Anomaly on tropical cyclone genesis frequency over the Western North Pacific. J Clim 27:8724–8739

    Article  Google Scholar 

  • Zhang R, Sumi A, Kimoto M (1996) Impact of El Niño on the East Asian monsoon: a diagnostic study of the ‘86/87 and ‘91/92 events. J Meteor Soc Jpn 74:49–62

    Article  Google Scholar 

  • Zhang R, Sumi A, Kimoto M (1999) A diagnostic study of the impact of El Niño on the precipitation in China. Adv Atmos Sci 16:229–241

    Article  Google Scholar 

  • Zhu J, Kumar A, Huang B, Balmaseda MA, Hu Z-Z, Marx L, Kinter JL III (2016) The role of off-equatorial surface temperature anomalies in the 2014 El Niño prediction. Sci Rep 6:19677. doi:10.1038/srep19677

    Article  Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers for their comments and suggestions which help improve the manuscript. This work is supported by the National Key Basic Research and Development Projects of China (2016YFA0600601), the National Natural Science Foundation of China (41525019, 41530530, 41530425 and 41275081), the State Oceanic Administration of China (GASI-IPOVAI-02), the Chinese Academy of Sciences (XDA11010000), the Pioneer Hundred Talents Program of the Chinese Academy of Sciences and the leading talents of Guangdong province program and the support of the Independent Research Project Program of State Key Laboratory of Tropical Oceanography (LTOZZ1603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Du.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Du, Y., Wen, Z. et al. Indo-Pacific climate during the decaying phase of the 2015/16 El Niño: role of southeast tropical Indian Ocean warming. Clim Dyn 50, 4707–4719 (2018). https://doi.org/10.1007/s00382-017-3899-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3899-z

Keywords

Navigation