Log in

Consideration of land-use and land-cover changes in the projection of climate extremes over North America by the end of the twenty-first century

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Changes in the essential climate extremes indices and surface variables for the end of the twenty-first century are assessed in this study based on two transient climate change simulations, with and without land-use and land-cover changes (LULCC), but identical atmospheric forcing. The two simulations are performed with the 5th generation of the Canadian Regional Climate Model (CRCM5) driven by the Canadian Earth System Model for the (2006–2100)-Representative Concentration Pathway 4.5 (RCP4.5) scenario. For the simulation with LULCC, land-cover data sets are taken from the global change assessment model (GCAM) representing the RCP4.5 scenario for the period 2006–2100. LULCC in RCP4.5 scenario suggest significant reduction in cultivated land (e.g. Canadian Prairies and Mississippi basin) due to afforestation. CRCM5 climate projections imply a general warming by the end of the twenty-first century, especially over the northern regions in winter. CRCM5 projects more warm spell-days per year over most areas of the continent, and implicitly more summer days and tropical nights at the expense of cold-spell, frost and ice days whose number is projected to decrease by up to 40% by the end of the twenty-first century with respect to the baseline period 1971–2000. Most land areas north of 45°N, in all seasons, as well as the southeastern United States in summer, exhibit increases in mean precipitation under the RCP4.5 scenario. In contrast, central parts of the continent in summer and much of Mexico in all seasons show reduced precipitation. In addition, large areas of North America exhibit changes of 10 to 40% (depending on the season and geographical location) in the number of heavy precipitation days. Results also suggest that the biogeophysical effects of LULCC on climate, assessed through differences between the two simulations, lead to warmer regional climates, especially in winter. The investigation of processes leading to this response shows high sensitivity of the results to changes in albedo as a response to LULCC. Overall, at the seasonal scale, results show that intense afforestation may contribute to an additional 25% of projected changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Acosta-Navarro JC et al (2016) Future response of temperature and precipitation to reduced aerosol emissions as compared with increased greenhouse gas concentrations. J Clim. doi:10.1175/JCLI-D-16-0466.1 (in press)

    Google Scholar 

  • Akhtar F et al (2009) Beyond the standards: designer air quality in 2050. Bull Am Meteorol Soc 89(1):38

    Google Scholar 

  • Alexandru A Sushama L (2015) Impact of land-use and land-cover changes on CRCM5 climate projections over North America for the twenty-first century Clim Dyn 47(3):1197–1209

    Google Scholar 

  • Arakawa A, Lamb VR (1977) Computational design of the basic dynamical process of the UCLA general circulation model. Meth Comput Phys 17:173–265

    Google Scholar 

  • Arora VK, Boer GJ (2010) Uncertainties in the 20th century carbon budget associated with land use change. Glob Change Biol 16:3327–3348

    Article  Google Scholar 

  • Arora VK, Montenegro A (2011) Small temperature benefits provided by realistic afforestation efforts. Nat Geosci 4(8):514–518

    Article  Google Scholar 

  • Arora VK, Boer GJ, Christian JR, Curry CL, Denman KL, Zahariev K, Flato GM, Scinocca JF, Merryfield WJ, Lee WG (2009) The effect of terrestrial photosynthesis down-regulation on the 20th century carbon budget simulated with the CCCma earth system model. J Clim 22:6066–6088

    Article  Google Scholar 

  • Arora VK et al (2011) Carbon émission limits required to satisfy future representative pathways of greenhouse gases. Geophys Res Lett 38:L05805

    Article  Google Scholar 

  • Bala G, Caldeira K, Wickett M et al (2007) Combined climate and carbon-cycle effects of large-scale deforestation. Proc Natl Acad Sci USA 104(16):6550–6555

    Article  Google Scholar 

  • Bélair S, Mailhot J, Girard C, Vaillancourt P (2005) Boundary-layer and shallow cumulus clouds in a medium-range forecast of a large-scale weather system. Mon Weather Rev 133:1938–1960

    Article  Google Scholar 

  • Beltran-Przekurat A et al (2012) Modelling the effects of land-use/land-cover changes on the near-surface atmosphere in southern South America. Int J Climatol 32(8):1206–1225. doi:10.1002/joc.2346

    Article  Google Scholar 

  • Benoit R, Côté J, Mailhot J (1989) Inclusion of a TKE boundary layer parameterization in the Canadian regional finite-element model. Mon Weather Rev 117:1726–1750

    Article  Google Scholar 

  • Betts RA, Boucher O, Collins M, Cox PM, Falloon PD, Gedney N, Hemming DL, Huntingford C, Jones CD, Sexton, D.M.H., Webb MJ (2007) Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448:1037–1041

    Article  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks and the climate benefits of forests. Science 320:1444

    Article  Google Scholar 

  • Chen G-S et al (2011) Simulated local and remote biophysical effects of afforestation over the Southeast United States in Boreal summer. J Clim 25:4511–4522

    Article  Google Scholar 

  • Christian JR, Arora VK, Boer GJ, Curry CL, Zahariev K, Denman KL, Flato GM, Lee WG, Merryfield WJ, Roulet NT, Scinocca JF (2010) The global carbon cycle in the Canadian Earth System Model (CanESM1): preindustrial control simulation. J Geophys Res 115:G03014

    Article  Google Scholar 

  • Clarke L, Edmonds J, Jacoby H, Pitcher H, Reilly J, Richels R (2007a) CCSP synthesis and assessment product 2.1, part A: scenarios of greenhouse gas emissions and atmospheric concentrations. U.S. Government Printing Office, Washington DC

    Google Scholar 

  • Clarke L, Lurz J, Wise M, Edmonds J, Kim S, Smith S, Pitcher H (2007b) Model documentation for the MiniCAM climate change science program stabilization scenarios: CCSP product 2.1a. PNNL technical report. PNNL-16735

  • Côté J, Gravel S, Méthot A, Patoine A, Roch M, Staniforth A (1998) The operational CMC-MRB global environmental multiscale (GEM) model. Part I: design considerations and formulation. Mon Weather Rev 126:1373–1395

    Article  Google Scholar 

  • Davies HC (1976) A lateral boundary formulation for multi-level prediction models. Q J R Meteorol Soc 102:405–418

    Google Scholar 

  • Davin EL, de Noblet-Ducoudre N (2010) Climatic impact of global scale deforestation: radiative versus nonradiative processes. J Clim 23(1):97–112

    Article  Google Scholar 

  • Delage Y (1997) Parameterising sub-grid scale vertical transport in atmospheric models under statically stable conditions. Bound-Layer Meteorol 82:23–48

    Article  Google Scholar 

  • Delage Y, Girard C (1992) Stability functions correct at the free convection limit and consistent for both the surface and Ekman layers. Bound-Layer Meteorol 58:19–31

    Article  Google Scholar 

  • Diffeenbaugh NS, Scherer M, Ashfaq M (2012) Response of snow-dependent hydrologic extremes to continued global warming. Nat Clim Change 3(11): 379–384

    Google Scholar 

  • Ellis PD (2010) The essential guide to effect sizes: statistical power, meta-analysis, and the interpretation of research results. Cambridge University Press, Cambridge (ISBN 978-0-521-14246-5)

    Book  Google Scholar 

  • Feddema J et al (2005) The importance of land-cover change in simulating future climates. Science 310(5754):1674–1678

    Article  Google Scholar 

  • Frich P et al (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212

    Article  Google Scholar 

  • Gent PR, Bryan FO, Danabasoglu G, Doney SC, Holland WR, Large WG, McWilliams JC (1998) The NCAR climate system model global ocean component. J Clim 11:1287–1306

    Article  Google Scholar 

  • Hale RC, Gallo KP, Loveland TR (2008) Influences of specific land use/land cover conversions on climatological normals of near-surface temperature. J Geophys Res 113:D14113. doi:10.1029/2007JD009548

    Article  Google Scholar 

  • Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations-the CRU TS3.10 Dataset. Int J Climatol 34:623–642. doi:10.1002/joc.3711

    Article  Google Scholar 

  • Hartung J, Knapp G, Sinha BK (2008). Statistical meta-analysis with applications. Wiley, New York (ISBN 978-1-118-21096-3)

    Book  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP version 2.1. Geophys Res Lett 36:L17808. doi:10.1029/2009GL040000

    Article  Google Scholar 

  • IPCC (2007a) Climate change 2007 IPCC fourth assessment report: synthesis report. IPCC, Geneva, pp 184–498

    Google Scholar 

  • IPCC (2007b) Climate change 2007: the physical science basis. In: Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 996

    Google Scholar 

  • IPCC AR5 (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. In: A special report of working groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 582

    Google Scholar 

  • Jihee S et al (2008) The impacts of urbanization on emissions and air quality: comparison of four visions of Austin, Texas. Environ Sci Technol 42(19):7294–7300

    Article  Google Scholar 

  • Kain S, Fritsch JM (1990) A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci 47:2784–2802

    Article  Google Scholar 

  • Krinner G et al (2005) A dynamic global vegetation model for studies of the coupled atmosphere–biosphere system. Glob Biogeochem Cycles. doi:10.1029/2003GB002199

  • Kuo HL (1965) On formation and intensification of tropical cyclones through latent heat release by cumulus convection. J Atmos Sci 22:40–63

    Article  Google Scholar 

  • Kyle GP, Luckow P, Calvin KV, Emanuel WR, Nathan M, Zhou Y (2011) GCAM 3.0 agriculture and land use: data sources and methods. PNNL-21025. Pacific Northwest National Laboratory, Richland

    Google Scholar 

  • Laguë M, Swann A (2016) Progressive mid-latitude afforestation: impacts on clouds, global energy transport, and precipitation. J Clim. doi:10.1175/JCLI-D-15-0748.1

    Google Scholar 

  • Langlois A, Bergeron J, Brown R, Royer A, Harvey R, Roy A, Wang L, Thériault N (2014) Evaluation of CLASS 2.7 and 3.5 simulations of snow properties from the canadian regional climate model (CRCM4) over Québec, Canada. J Hydrometeorol 15:1325–1343. doi:10.1175/JHM-D-13-055.1

    Article  Google Scholar 

  • Laprise R (1992) The Euler equation of motion with hydrostatic pressure as independent coordinate. Mon Weather Rev 120:197–207

    Article  Google Scholar 

  • Laprise R, Hernández-Díaz L, Tete K et al (2013) Climate projections over CORDEX Africa domain using the fifth-generation Canadian Regional Climate Model (CRCM5). Clim Dyn 41:3219. doi:10.1007/s00382-012-1651-2

    Article  Google Scholar 

  • Lee X et al (2011) Observed increase in local cooling effect of deforestation at higher latitudes. Nature 479(7373):384–387

    Article  Google Scholar 

  • Legates DR, Willmott CJ (1990) Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int J Climatol 10:111–127

    Article  Google Scholar 

  • Li J, Barker HW (2005) A radiation algorigthm with correlated-k distribution. Part I: Local thermal equilibrium. J Atmos Sci 62:286–309

    Article  Google Scholar 

  • Li D, Tian Y, Liu C, Hao F (2004) Impact of land-cover and climate changes on runoff of the source regions of the Yellow River. J Geog Sci 14:330–338

    Article  Google Scholar 

  • Li H, Zhang Y, Vaze J, Wang B. (2012) Separating effects of vegetation change and climate variability using hydrological modelling and sensitivity-based approaches. J Hydrol 420–421:403–418

    Article  Google Scholar 

  • Li Y et al (2015) Local cooling and warming effects of forest based on satellite observations. Nat Commun 6:6603. doi:10.1038/ncomms7603

    Article  Google Scholar 

  • Liu Y, Stanturf J, Lu H (2008) Modeling the potential of the Northern China Forest shelterbelt in improving hydroclimate conditions. J Am Water Res Assoc (JAWRA) 44(5):1176–1192. doi:10.1111/j.1752-1688.2008.00240.x

  • López-Moreno JI, Zabalza J, Vicente-Serrano SM, Revuelto J, Gilaberte M, Azorin-Molina C, Morán-Tejeda E, García-Ruiz JM, Tague C (2014) Impact of climate and land use change on water availability and reservoir management: scenarios in the Upper Aragón River, Spanish Pyrenees. Sci Total Environ 493:1222–1231

    Article  Google Scholar 

  • Mahmood et al (2010) Impacts of land use /land cover change on climate and future research priorities. Bull Am Meteorol Soc 91(1):37–46

  • Maloney ED et al (2014) North American climate in CMIP5 experiments: part III: assessment of 21st century projections. J Clim 27:2230–2270

    Article  Google Scholar 

  • McFarlane NA (1987) The effect of orographically excited gravity wave drag on the circulation of the lower stratosphere and troposphere. J Atmos Sci 44:1175–1800

    Article  Google Scholar 

  • Meinshausen M, Smith S (2011) The RCP greenhouse gas concentrations and their extension from 1765 to 2500. Clim Change (Special Issue on RCPs)

  • Moss R et al (2008) Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies. Intergovernmental Panel on Climate Change, Geneva, p 132

  • Moss R et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756

    Article  Google Scholar 

  • Pausata FSR et al (2016) Impacts of dust reduction on the northward expansion of the African monsoon during the Green Sahara period, Earth and plan. Sci Lett 434:298–307

    Google Scholar 

  • Peacock S (2012) Projected twenty-first-century changes in temperature, precipitation, and snow cover over North America in CCSM4. J Clim 25(13):4405–4429. doi:10.1175/JCLI-D-11-00214.1

    Article  Google Scholar 

  • Peng SS et al (2014) Afforestation in China cools local land surface temperature. PNA 111(8):2915–2919

    Article  Google Scholar 

  • Pielke RA et al (2011) Land use/land cover changes and climate: modelling analysis and observational evidence, WIREs. Clim Change 2:828–850

    Google Scholar 

  • Randerson JT et al (2006) The impact of Boreal forest fire on climate warming. Science 314(5802):1130–1132. doi:10.1126/science.1132075

    Article  Google Scholar 

  • Runnalls KE, Oke TR (2006) A technique to detect microclimatic inhomogeneities in historical records of screen-level air temperature. J Clim 19:959–978

    Article  Google Scholar 

  • Scinocca JF, McFarlane NA, Lazare M, Li J, Plummer D (2008) Technical note: the CCCma third generation AGCM and its extension into the middle atmosphere. Atmos Chem Phys 8:7055–7074

    Article  Google Scholar 

  • Seager R, Vecchi GA (2010) Greenhouse warming and the 21st Century hydroclimate of southwestern North America. Proc Natl Acad Sci 107(50):21277–21282. doi:10.1073/pnas.0910856107

    Article  Google Scholar 

  • Seidel DJ et al (2008) Widening of the tropical belt in a changing climate. Nature Geosci 1:21–24. doi:10.1038/ngeo.2007.38

    Article  Google Scholar 

  • Šeparović L, Alexandru A, Laprise R, Martynov A, Sushama L, Winger K, Tete K, Valin M (2013) Present climate and climate change over North America as simulated by the fifth-generation Canadian regional climate model. Clim Dyn. doi:10.1007/s00382-013-1737-5

    Google Scholar 

  • Sillmann J, Kharin VV, Zhang X, Zwiers FW, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: part 1. Model evaluation in the present climate. J Geophys Res 118:1716–1733. doi:10.1002/jgrd.50203

    Google Scholar 

  • Sitch S et al (2004) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Change Biol 9(2):161–185

    Article  Google Scholar 

  • Smith SJ, Wigley TML (2006) Multi-gas forcing stabilization with the MiniCAM. Energy J (Special Issue #3):373–391

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, London

    Book  Google Scholar 

  • Sundqvist H, Berge E, Kristjansson JE (1989) Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Mon Weather Rev 117:1641–1657

    Article  Google Scholar 

  • Swann ALS, Fungc IY, Chiang JCH (2012) Mid-latitude afforestation shifts general circulation and tropical precipitation. Proc Natl Acad Sci 109(3):712–716

    Article  Google Scholar 

  • Swann ALS, Fungc IY, Liu Y, Chiang JCH (2014) Remote vegetation feedbacks and the mid-holocene green sahara. J Clim 27:4857–4870

    Article  Google Scholar 

  • Thomson AM, Calvin KV, Smith SJ, Kyle GP, Volke A, Patel P, Edmonds JA (2011) RCP4. 5: A pathway for stabilization of radiative forcing by 2100. Clim Change 109:77–94. doi:10.1007/s10584-011-0151-4

    Article  Google Scholar 

  • Trail M et al (2013) Potential impact of land use change on future regional climate in the Southeastern U.S.: reforestation and crop land conversion. J Geophys Res Atmos. doi:10.1002/2013JD020356

    Google Scholar 

  • Verseghy D (2009) CLASS—the Canadian land surface scheme (version 3.4): technical documentation (Version 1.1)

  • von Salzen K, McFarlane NA, Lazare M (2005) The role of shallow convection in the water and energy cycles of the atmosphere. Clim Dyn 25:671–688

    Article  Google Scholar 

  • Wang SF, Kang SZ, Zhang L, Li FS (2008) Modelling hydrological response to different land-use and climate change scenarios in the Zamu River basin of northwest China. Hydrol Process 22:2502–2510

    Article  Google Scholar 

  • Willmott CJ, Matsuura K (1995) Smart interpolation of annually averaged air temperature in the United States. J App Meteorol 34:2577–2586

    Article  Google Scholar 

  • Wise MA, Calvin KV, Thomson AM, Clarke LE, Bond-Lamberty B, Sands RD, Smith SJ, Janetos AC, Edmonds JA (2009) Implications of limiting CO2 concentrations for land use and energy. Science 324:1183–1186

    Article  Google Scholar 

  • Woldemichael AT, Hossain FRA, Pielke S, Beltra ́n-Przekurat A (2012) Understanding the impact of dam-triggered land-use/land-cover change on the modification of extreme precipitation. Water Resour Res 48:W09547. doi:10.1029/2011WR011684

    Article  Google Scholar 

  • Yeh K-S, Côté J, Gravel S, Méthot A, Patoine A, Roch M, Staniforth A (2002) The CMC-MRB global environmental multiscale (GEM) model. Part III: nonhydrostatic formulation. Mon Weather Rev 130:339–356

    Article  Google Scholar 

  • Zadra A, Roch M, Laroche S, Charron M (2003) The subgrid- scale orographic blocking parametrization of the GEM Model. Atmos Ocean 41:155–170

    Article  Google Scholar 

  • Zadra A, Caya D, Côte J, Dugas B, Jones C, Laprise R, Winger K, Caron L-P (2008) The next Canadian regional c1imate model. Phys Canada 64:74–83

    Google Scholar 

  • Zadra A, McTaggart-Cowan R, Roch M (2012) Recent changes to the orographic blocking. Seminar presentation, RPN, Dorval, Canada, 30 March 2012. 30/Seminar_2012-03-30_Ayrton-Zadra.pdf

  • Zhao Q et al (2015) Satellite-indicated long-term vegetation changes and their drivers on the Mongolian Plateau. Landscape Ecol 30(9):1599–1611

    Article  Google Scholar 

Download references

Acknowledgements

The computations were made on the Guillimin high-performance computing platforms, through the CLUMEQ Consortium, which is part of Compute Canada and a member of Calcul Québec.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adelina Alexandru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexandru, A. Consideration of land-use and land-cover changes in the projection of climate extremes over North America by the end of the twenty-first century. Clim Dyn 50, 1949–1973 (2018). https://doi.org/10.1007/s00382-017-3730-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3730-x

Keywords

Navigation