Log in

A cubic B-spline quasi-interpolation algorithm to capture the pattern formation of coupled reaction-diffusion models

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Diffusion plays a significant role in complex pattern formulations occurred in biological and chemical reactions. In this work, the authors study the effect of diffusion in coupled reaction-diffusion systems named the Gray-Scott model for complex pattern formation with the help of cubic B-spline quasi-interpolation (CBSQI) method and capture various formates of these patterns. The idea of Kronecker product is used first time with CBSQI method for 2D problems. Linear stability analysis of the reaction-diffusion system as well as stability of the proposed method is studied. Four test problems are considered to check the accuracy and efficiency of the method and found the stable patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond Ser B 237(641):37–72

    Article  MathSciNet  Google Scholar 

  2. Jiwari R, Singh S, Kumar Aj (2017) Numerical simulation to capture the pattern formation of coupled reaction-diffusion models. Chaos Solitons Fractals 103:422–439

    Article  MathSciNet  Google Scholar 

  3. Sayama H (2015) Introduction to the modeling and analysis of complex systems. Open SUNY Textbooks, New York

    Google Scholar 

  4. Mittal RC, Rohila R (2016) Numerical simulation of reaction-diffusion systems by modified cubic b-spline differential quadrature method. Chaos Solitons Fractals 92:9–19

    Article  MathSciNet  Google Scholar 

  5. Liu H, Wang W (2010) The amplitude equations of an epidemic model. Sci Technol Eng 10(8):1929–1933

    Google Scholar 

  6. Dutt AK (2012) Amplitude equation for a diffusion-reaction system: the reversible Sel’kov model. AIP Adv 2(4):042125

    Article  Google Scholar 

  7. Lee I-H, Cho U-I (2000) Pattern formations with Turing and HOPF oscillating pattern in a discrete reaction-diffusion system. Bull Korean Chem Soc 21(12):1213–1216

    Google Scholar 

  8. Maini PK, Woolley TE, Baker RE, Gaffney EA, Lee SS (2012) Turing’s model for biological pattern formation and the robustness problem. Interface focus 2(4):487–496

    Article  Google Scholar 

  9. Vanag VK, Epstein IR (2009) Cross-diffusion and pattern formation in reaction-diffusion systems. Phys Chem Chem Phys 11(6):897–912

    Article  Google Scholar 

  10. Fanelli D, Cianci C, Di Patti F (2013) Turing instabilities in reaction-diffusion systems with cross diffusion. Eur Phys J B 86(4):142

    Article  MathSciNet  Google Scholar 

  11. Shi J, **e Z, Little K (2011) Cross-diffusion induced instability and stability in reaction-diffusion systems. J Appl Anal Comput 1(1):95–119

    MathSciNet  MATH  Google Scholar 

  12. Othmer HG, Scriven LE (1971) Instability and dynamic pattern in cellular networks. J Theor Biol 32(3):507–537

    Article  Google Scholar 

  13. Nakao H, Mikhailov AS (2008) Turing patterns on networks. ar**v preprint ar**v:0807.1230

  14. Nakao H, Mikhailov AS (2010) Turing patterns in network-organized activator-inhibitor systems. Nat Phys 6(7):544

    Article  Google Scholar 

  15. Hata S, Nakao H, Mikhailov AS (2012) Global feedback control of Turing patterns in network-organized activator-inhibitor systems. EPL (Europhysics Letters) 98(6):64004

    Article  Google Scholar 

  16. Udwadia FE, Koganti PB (2015) Optimal stable control for nonlinear dynamical systems: an analytical dynamics based approach. Nonlinear Dyn 82(1–2):547–562

    Article  MathSciNet  Google Scholar 

  17. Skandari MHN (2015) On the stability of a class of nonlinear control systems. Nonlinear Dyn 80(3):1245–1256

    Article  MathSciNet  Google Scholar 

  18. Saldi N, Yüksel S, Linder T (2016) Near optimality of quantized policies in stochastic control under weak continuity conditions. J Math Anal Appl 435(1):321–337

    Article  MathSciNet  Google Scholar 

  19. Liu K, Fridman E, Johansson KH (2015) Networked control with stochastic scheduling. IEEE Trans Autom Control 60(11):3071–3076

    Article  MathSciNet  Google Scholar 

  20. Cohen D, Nigmatullin R, Kenneth O, Jelezko F, Khodas M, Retzker A (2019) Nano-NMR based flow meter. ar**v preprint ar**v:1903.02348

  21. Hale JK, Peletier LA, Troy WC (2000) Exact homoclinic and heteroclinic solutions of the Gray-Scott model for autocatalysis. SIAM J Appl Math 61(1):102–130

    Article  MathSciNet  Google Scholar 

  22. Kolokolnikov T, Ward MJ, Wei J (2006) Zigzag and breakup instabilities of stripes and rings in the two-dimensional Gray-Scott model. Stud Appl Math 116(1):35–95

    Article  MathSciNet  Google Scholar 

  23. Zheng Q, Shen J, Wang Z (2018) Pattern dynamics of the reaction-diffusion immune system. PLoS One 13(1):e0190176

    Article  Google Scholar 

  24. Castelli R (2017) Rigorous computation of non-uniform patterns for the 2-dimensional Gray-Scott reaction-diffusion equation. Acta Appl Math 151(1):27–52

    Article  MathSciNet  Google Scholar 

  25. McGough JS, Riley K (2004) Pattern formation in the Gray-Scott model. Nonlinear Anal Real World Appl 5(1):105–121

    Article  MathSciNet  Google Scholar 

  26. Yadav OP, Jiwari R (2019) A finite element approach to capture Turing patterns of autocatalytic Brusselator model. J Math Chem 57(3):769–789

    Article  MathSciNet  Google Scholar 

  27. Jordehi AR (2015) A chaotic artificial immune system optimisation algorithm for solving global continuous optimisation problems. Neural Comput Appl 26(4):827–833

    Article  Google Scholar 

  28. Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12(1):991–1045

    Article  Google Scholar 

  29. McCoy DF, Devarajan V (1997) Artificial immune systems and aerial image segmentation. In: 1997 IEEE international conference on systems, man, and cybernetics. Computational cybernetics and simulation, volume 1, pp 867–872. IEEE

  30. Kuo RJ, Chiang NJ, Chen Z-Y (2014) Integration of artificial immune system and k-means algorithm for customer clustering. Appl Artif Intell 28(6):577–596

    Google Scholar 

  31. Sablonnière P (2005) Univariate spline quasi-interpolants and applications to numerical analysis. Rend Semin Mat Univ Politech Torino 63(3):211–222

    MathSciNet  MATH  Google Scholar 

  32. Sablonnière P (2007) A quadrature formula associated with a univariate spline quasi interpolant. BIT 47(4):825–837

    Article  MathSciNet  Google Scholar 

  33. Zhu C-G, Kang W-S (2010) Applying cubic B-spline quasi-interpolation to solve hyperbolic conservation laws. UPB Sci Bull Ser D 72(4):49–58

    Google Scholar 

  34. Zhu C-G, Kang W-S (2010) Numerical solution of Burgers–Fisher equation by cubic B-spline quasi-interpolation. Appl Math Comput 216(9):2679–2686

    MathSciNet  MATH  Google Scholar 

  35. Kumar R, Baskar S (2016) B-spline quasi-interpolation based numerical methods for some Sobolev type equations. J Comput Appl Math 292:41–66

    Article  MathSciNet  Google Scholar 

  36. Mittal RC, Kumar S, Jiwari R (2020) A cubic B-spline quasi interpolation method for solving two-dimensional unsteady advection diffusion equations. Int J Numer Methods Heat Fluid Flow 30(9):4281–4306

    Article  Google Scholar 

  37. Schumaker LL (2007) Spline functions: basic theory. Cambridge Mathematical Library, 3rd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  38. Sablonnière P (2004) Quadratic spline quasi-interpolants on bounded domains of \({\mathbb{R}}^d, d=1,2,3\). Splines, radial basis functions and applications. Rend Semin Mat Univ Politec Torino 61(3):229–246

    MathSciNet  Google Scholar 

  39. Trefethen LN (2000) Spectral methods in MATLAB, volume 10. Siam

  40. Zhang H, Ding F (2013) On the Kronecker products and their applications. J Appl Math. https://doi.org/10.1155/2013/296185

    Article  MathSciNet  MATH  Google Scholar 

  41. Simmons GF (2016) Differential equations with applications and historical notes. CRC Press, Boca Raton

    MATH  Google Scholar 

  42. Hundsdorfer W, Verwer JG (2013) Numerical solution of time-dependent advection-diffusion-reaction equations, vol 33. Springer Science & Business Media, New York

    MATH  Google Scholar 

Download references

Acknowledgements

The author Sudhir Kumar would like to thank Council of Scientific and Industrial Research (CSIR), Government of India (File no: 09/143(0889)/2017-EMR-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhir Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittal, R.C., Kumar, S. & Jiwari, R. A cubic B-spline quasi-interpolation algorithm to capture the pattern formation of coupled reaction-diffusion models. Engineering with Computers 38 (Suppl 2), 1375–1391 (2022). https://doi.org/10.1007/s00366-020-01278-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01278-3

Keywords

Navigation