Log in

The local discontinuous Galerkin method for 2D nonlinear time-fractional advection–diffusion equations

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This paper presents a numerical solution of time-fractional nonlinear advection–diffusion equations (TFADEs) based on the local discontinuous Galerkin method. The trapezoidal quadrature scheme (TQS) for the fractional order part of TFADEs is investigated. In TQS, the fractional derivative is replaced by the Volterra integral equation which is computed by the trapezoidal quadrature formula. Then the local discontinuous Galerkin method has been applied for space-discretization in this scheme. Additionally, the stability and convergence analysis of the proposed method has been discussed. Finally some test problems have been investigated to confirm the validity and convergence of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Debnath L (2003) Recent application of fractional calculus to science and engineering. Int J Math Math Sci 54:3413–3442

    Article  MathSciNet  MATH  Google Scholar 

  2. Hilfer R (2000) Applications of fractional calculus in physics. World Scientific Publishing Co., London

    Book  MATH  Google Scholar 

  3. Gorenflo R, Mainardi F (1996) Fractional oscillation and Mittag-Leffler functions, Fachbereich Mathematik and Informatic, A14/96. Freie Universitaet, Berlin

    Google Scholar 

  4. Sabatier J, Agrawal OP, Machado JT (2007) Advances in fractional calculus, theoretical developments and applications in physics and engineering. Springer, London

    MATH  Google Scholar 

  5. Zaslavsky GM (2008) Hamiltonian chaos and fractional dynamics. Oxford Univ. Press, Oxford

    MATH  Google Scholar 

  6. Abelman S, Selvakumaran KA, Rashidi MM, Purohit SD (2017) Subordination conditions for a class of non-bazilevic type defined by using fractional q-calculus operators. Facta Univ Ser Math Inform 32:255–267

    Article  MathSciNet  Google Scholar 

  7. Singh J, Rashidi M, Kumar D, Swroop R (2016) A fractional model of a dynamical Brusselator reaction-diffusion system arising in triple collision and enzymatic reactions. Nonlinear Eng Model Appl 5:277–285

    Google Scholar 

  8. Sarwar S, Rashidi M (2016) Approximate solution of two-term fractional-order diffusion, wave-diffusion, and telegraph models arising in mathematical physics using optimal homotopy asymptotic method. Waves Rand Complex Med 26:365–382

    Article  MathSciNet  MATH  Google Scholar 

  9. Leibniz GW (1697) Letter from Hanover, Leibniz Mathematische Schriften, Germany to John Wallis

  10. Euler L (1730) M\(\acute{e}\)moire dans le tome V des comment, saint petersberg Annees 55

  11. Laplace PS (1812) Th\(\acute{e}\)orie Analytique des probabilit\(\acute{e}\)s, courcier, Paris

  12. Liouville J (1823) Mémoire sur le calcul des différentielles á indices quelconques. J. École Polytechnique 13(21):71–162

    Google Scholar 

  13. O’Shaughnessy L, Post EL (1918) Problem 433. Am Math Mon 25:172–173

    Article  MathSciNet  Google Scholar 

  14. McBride AC, Roach G (1985) Fractional calculus, research notes in math. Pitman, Boston

    Google Scholar 

  15. Nishimoto K (1991) An essence of Nishimoto’s fractional calculus. Descartes, Koriyama

    MATH  Google Scholar 

  16. Kiryakova V (1994) Generalized fractional calculus and applications, research notes in math. Pitman Longman, Harlow and Wiley, New York

    MATH  Google Scholar 

  17. Podlubny I (1999) Fractional differential equations. Academic, San Diego

    MATH  Google Scholar 

  18. Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, Amsterdam

    MATH  Google Scholar 

  19. Diethelm K (2010) The analysis of fractional differential equations, an application oriented exposition using differential operators of Caputo type. Springer, Berlin

    MATH  Google Scholar 

  20. Kazem S (2013) An integral operational matrix based on Jacobi polynomials for solving fractional-order differential equations. Appl Math Model 37:1126–1136

    Article  MathSciNet  MATH  Google Scholar 

  21. Kazem S, Abbasbandy S, Kumar S (2013) Fractional-order Legendre functions for solving fractional-order differential equations. Appl Math Model 37:5498–5510

    Article  MathSciNet  MATH  Google Scholar 

  22. Eshaghi J, Adibi H, Kazem S (2016) Solution of nonlinear weakly singular Volterra integral equations using the fractional-order Legendre functions and pseudospectral method. Math Methods Appl Sci 39:3411–3425

    Article  MathSciNet  MATH  Google Scholar 

  23. ** B, Lazarov R, Liu Y, Zhou Z (2015) The Galerkin finite element method for a multi-term time-fractional diffusion equation. J Comput Phys 281:825–843

    Article  MathSciNet  MATH  Google Scholar 

  24. ** B, Lazarov R, Pasciak J, Zhou Z (2014) Error analysis of a finite element method for the space-fractional parabolic equation. SIAM J Numer Anal 52:2272–2294

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhao Y, Bu W, Huang J, Liu D-Y, Tang Y (2015) Finite element method for two-dimensional space-fractional advection-dispersion equations. Appl Math Comput 257:553–565

    MathSciNet  MATH  Google Scholar 

  26. ** B, Lazarov R, Zhou Z (2013) Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J Numer Anal 51:445–466

    Article  MathSciNet  MATH  Google Scholar 

  27. ** B, Lazarov R, Pasciak J, Zhou Z (2015) Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion. IMA J Numer Anal 35:561–582

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang X, He Y, Wei L, Tang B, Wang S (2014) A fully discrete local discontinuous Galerkin method for one-dimensional time-fractional Fisher’s equation. Int J Comput Math 91:2021–2038

    Article  MathSciNet  MATH  Google Scholar 

  29. Eshaghi J, Adibi H, Kazem S (2017) On a numerical investigation of the time fractional Fokker–Planck equation via local discontinuous glerkin method. Int J Comput Math 94(9):1916–1942

    Article  MathSciNet  MATH  Google Scholar 

  30. Yang A-M, Zhang Y-Z, Cattani C, **e G-N, Rashidi MM, Zhou Y-J, Yang X-J (2014) Application of local fractional series expansion method to solve Klein–Gordon equations on cantor sets. Abstr Appl Anal 2014:372741

    MathSciNet  MATH  Google Scholar 

  31. Kumar S, Kumar D, Abbasbandy S, Rashidi MM (2014) Analytical solution of fractional Navier–Stokes equation by using modified Laplace decomposition method. Ain Shams Eng J 5:569–574

    Article  Google Scholar 

  32. Li BQ (2006) Discontinuous finite elements in fluid dynamics and heat transfer. Springer, Berlin

    MATH  Google Scholar 

  33. Cockburn B (1998) Discontinuous Galerkin methods for convection-dominated problems. Lect Notes Comput Sci Eng 9:69–224

    Article  MathSciNet  MATH  Google Scholar 

  34. Cockburn B, Shu C-W (1998) The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J Numer Anal 35:2440–2463

    Article  MathSciNet  MATH  Google Scholar 

  35. Oldham KB, Spanier J (1974) The fractional calculus. Academic, New York

    MATH  Google Scholar 

  36. Linz P (1985) Analytical and numerical methods for Volterra equations. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  37. Reed W, Hill T (1973) Triangular mesh methods for the neutron transport equation, Technical Report LA-UR-73-479. Alamos Scientific Laboratory, New Mexico

    Google Scholar 

  38. Cockburn B, Shu C-W (1989) TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math Comp 52:411–435

    MathSciNet  MATH  Google Scholar 

  39. Cockburn B, Shu C-W (1998) The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J Comput Phys 141:199–224

    Article  MathSciNet  MATH  Google Scholar 

  40. Cockburn B, Shu C-W (2001) Runge-kutta discontinuous Galerkin methods for convection-dominated problems. J Sci Comput 16:173–261

    Article  MathSciNet  MATH  Google Scholar 

  41. Yan J, Shu C-W (2002) Local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J Sci Comput 17:27–47

    Article  MathSciNet  MATH  Google Scholar 

  42. Xu Y, Shu C-W (2005) Local discontinuous Galerkin methods for nonlinear Schrodinger equations. J Comput Phys 205:72–97

    Article  MathSciNet  MATH  Google Scholar 

  43. Xu Y, Shu C-W (2006) Local discontinuous Galerkin methods for the Kuramoto–Sivashinsky equations and the Ito-type coupled KdV equations. Comput Methods Appl Mech Eng 195:3430–3447

    Article  MathSciNet  MATH  Google Scholar 

  44. Xu Y, Shu C-W (2007) Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convection-diffusion and KdV equations. Comput Methods Appl Mech Eng 196:3805–3822

    Article  MathSciNet  MATH  Google Scholar 

  45. Xu Y, Shu C-W (2010) Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Commun Comput Phys 7:1–46

    MathSciNet  MATH  Google Scholar 

  46. Warburton T, Embree M (2006) The role of the penalty in the local discontinuous Galerkin method for Maxwell’s eigenvalue problem. Comput Methods Appl Mech Eng 195:3205–3223

    Article  MathSciNet  MATH  Google Scholar 

  47. Aizinger V, Dawson C (2007) The local discontinuous Galerkin method for three-dimensional shallow water flow. Comput Methods Appl Mech Eng 196:734–746

    Article  MathSciNet  MATH  Google Scholar 

  48. Baccouch M (2010) A local discontinuous Galerkin method for the second-order wave equation. Comput Methods Appl Mech Eng 209–212:129–143

    MathSciNet  MATH  Google Scholar 

  49. Baccouch M (2014) A superconvergent local discontinuous Galerkin method for the second-order wave equation on Cartesian grids. Comput Math Appl 68:1250–1278

    Article  MathSciNet  MATH  Google Scholar 

  50. Guo R, Xu Y, Xu Z (2015) Local discontinuous Galerkin methods for the functionalized Cahn–Hilliard equation. J Sci Comput 63:913–937

    Article  MathSciNet  MATH  Google Scholar 

  51. Liang X, Khaliq A, **ng Y (2015) Fourth order exponential time differencing method with local discontinuous Galerkin approximation for coupled nonlinear Schrodinger equations. Commun Comput Phys 17:510–541

    Article  MathSciNet  MATH  Google Scholar 

  52. Guo H, Yu F, Yang Y (2017) Local discontinuous Galerkin method for incompressible miscible displacement problem in porous media. J Sci Comput 71:615–633

    Article  MathSciNet  MATH  Google Scholar 

  53. Li XH, Shu C-W, Yang Y (2017) Local discontinuous Galerkin method for the Keller–Segel chemotaxis model. J Sci Comput. https://doi.org/10.1007/s10915-016-0354-y

  54. Cao W, Huang Q (2017) Superconvergence of local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J Sci Comput. https://doi.org/10.1007/s10915-017-0377-z

  55. Bi H, Qian C, Sun Y (2016) The optimal error estimate and superconvergence of the local discontinuous Galerkin methods for one-dimensional linear fifth order time dependent equations. Comput Math Appl 72:687–703

    Article  MathSciNet  MATH  Google Scholar 

  56. Wei L, He Y (2014) Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourth-order problems. Appl Math Model 38:1511–1522

    Article  MathSciNet  MATH  Google Scholar 

  57. Wei L, He Y, Zhang Y (2013) Numerical analysis of the fractional seventh-order KdV equation using an implisit fully discrete local discotinuous Galerkin method. Int J Numer Anal Model 10:430–444

    MathSciNet  MATH  Google Scholar 

  58. Wei L, He Y, Zhang X, Wang S (2012) Analysis of an implicit fully discrete local discontinuous Galerkin method for the time-fractional Schrodinger equation. Finite Elem Anal Des 59:28–34

    Article  MathSciNet  Google Scholar 

  59. Wei L, Dai H, Zhang D, Si Z (2014) Fully discrete local discontinuous Galerkin method for solving the fractional telegraph equation. Calcolo 51:175–192

    Article  MathSciNet  MATH  Google Scholar 

  60. Wei L, Zhang X, Kumar S, Yildirim A (2012) A numerical study based on an implicit fully discrete local discontinuous Galerkin method for the time-fractional coupled Schrodinger system. Comput Math Appl 64:2603–2615

    Article  MathSciNet  MATH  Google Scholar 

  61. Guo L, Wang Z, Vong S (2016) Fully discrete local discontinuous Galerkin methods for some time-fractional fourth-order problems. Int J Comput Math 93:1665–1682

    Article  MathSciNet  MATH  Google Scholar 

  62. Cockburn B, Kanschat G, Perugia I, Schotzau D (2001) Superconvergence of the local discontinuous Galerkin method for elliptic problems on cartesian grids. SIAM J Numer Anal 39:264–285

    Article  MathSciNet  MATH  Google Scholar 

  63. Ciarlet P (1978) The finite element method for elliptic problem, studies in mathematics and its application. North-Holland, Amsterdam

    Google Scholar 

  64. Yao Cheng XM, Zhang Q (2017) Application of generalized Gauss–Radau projections for the local discontinuous galerkin method for linear convection-diffusion equations. Math Comput 86:1233–1267

    Article  MathSciNet  MATH  Google Scholar 

  65. Kurganov A, Tadmor E (2000) New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J Comput Phys 160:241–282

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the reviewers for their comments and suggestions which have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Kazem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Appendix 1: Discrete Gronwall’s inequality

Appendix 1: Discrete Gronwall’s inequality

If \(x_i,~f_i,~g_i,~h_i\) are non-negative sequences which satisfy

$$\begin{aligned} x_n \le f_n + g_n \sum _{i=0}^{n} h_i x_i,\qquad n\ge 1, \end{aligned}$$

then we have

$$\begin{aligned} x_n \le f_n + g_n \sum _{i=0}^{n} h_i f_i \prod _{j=i+1}^{n} (h_j g_j + 1). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eshaghi, J., Kazem, S. & Adibi, H. The local discontinuous Galerkin method for 2D nonlinear time-fractional advection–diffusion equations. Engineering with Computers 35, 1317–1332 (2019). https://doi.org/10.1007/s00366-018-0665-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-018-0665-8

Keywords

Mathematics Subject Classification

Navigation