Log in

Nonparametric relative error regression for spatial random variables

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

Let \(\displaystyle Z_{\mathbf {i}}=\left( X_{\mathbf {i}},\ Y_{\mathbf {i}}\right) _{\mathbf {i}\in \mathbb {N}^{N}\, N \ge 1}\), be a \( \mathbb {R}^d\times \mathbb {R}\)-valued measurable strictly stationary spatial process. We consider the problem of estimating the regression function of \(Y_{\mathbf {i}}\) given \(X_{\mathbf {i}}\). We construct an alternative kernel estimate of the regression function based on the minimization of the mean squared relative error. Under some general mixing assumptions, the almost complete consistency and the asymptotic normality of this estimator are obtained. Its finite-sample performance is compared with a standard kernel regression estimator via a Monte Carlo study and real data example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Let \((z_n)_{n\in \mathbbm {N}}\) be a sequence of real r.v.’s. We say that \(z_n\) converges almost completely (a.co.) toward zero if, and only if, \(\forall \epsilon > 0\), \(\sum _{n=1}^\infty P(|z_n| >\epsilon ) < \infty \). Moreover, we say that the rate of the almost complete convergence of \(z_n\) to zero is of order \(u_n\) (with \(u_n\rightarrow 0)\) and we write \(z_n = O_{a.co.}(u_n)\) if, and only if, \(\exists \epsilon > 0\) such that \(\sum _{n=1}^\infty P(|z_n| >\epsilon u_n) < \infty \). This kind of convergence implies both almost sure convergence and convergence in probability.

References

  • Bernhard FA, Stahlecker P (2003) Relative squared error prediction in the generalized linear regression model. Stat Pap 44:107–115

    Article  MathSciNet  MATH  Google Scholar 

  • Biau G, Cadre B (2004) Nonparametric spatial prediction. Stat Inference Stoch Process 7:327–349

    Article  MathSciNet  MATH  Google Scholar 

  • Bobbia M, Misiti M, Misiti Y, Poggi JM, Portier B (2015) Spatial outlier detection in the PM10 monitoring network of Normandy. Atmos Pollut Res 6:476–483

    Article  Google Scholar 

  • Carbon M, Tran LT, Wu B (1997) Kernel density estimation for random fields. Stat Probab Lett 36:115–125

    Article  MATH  Google Scholar 

  • Carbon M, Francq C, Tran LT (2007) Kernel regression estimation for random fields. J Stat Plan Inference 137:778–798

    Article  MathSciNet  MATH  Google Scholar 

  • Cressie NA (1993) Statistics for spatial data. Wiley, New York

    MATH  Google Scholar 

  • Dabo-Niang S, Thiam B (2010) Robust quantile estimation and prediction for spatial processes. Stat Probab Lett 80:1447–1458

    Article  MathSciNet  MATH  Google Scholar 

  • Dabo-Niang S, Yao AF (2007) Kernel regression estimation for continuous spatial processes. Math Methods Stat 16:1–20

    Article  MathSciNet  MATH  Google Scholar 

  • Dabo-Niang S, Ould-Abdi S, Ould-Abdi A, Diop A (2014) Consistency of a nonparametric conditional mode estimator for random fields. Stat Methods Appl 23:1–39

    Article  MathSciNet  MATH  Google Scholar 

  • Dabo-Niang S, Yao A, Pischedda L, Cuny P, Gilbert F (2009) Spatial kernel mode estimation for functional random, with application to bioturbation problem. Stoch Environ Res Risk Assess 24:487–497

    Article  Google Scholar 

  • Diggle P, Ribeiro PJ (2007) Model-based geostatistics. Springer, New York

    MATH  Google Scholar 

  • Doukhan P (1994) Mixing: properties and examples. Lecture Notes in Statistics, vol 85. Springer- Verlag, New York

  • El Machkouri M, Stoica R (2010) Asymptotic normality of kernel estimates in a regression model for random fields. J Nonparametric Stat 22:955–971

    Article  MathSciNet  MATH  Google Scholar 

  • Filzmoser P, Ruiz-Gazen A, Thomas-Agnan C (2014) Identification of local multivariate outliers. Stat Pap 55:29–47

    Article  MathSciNet  MATH  Google Scholar 

  • Gheriballah A, Laksaci A, Rouane R (2010) Robust nonparametric estimation for spatial regression. J Stat Plan Inference 140:1656–1670

    Article  MathSciNet  MATH  Google Scholar 

  • Guyon X (1987) Estimation d’un champ par pseudo-vraisemblance conditionnelle: Etude asymptotique et application au cas Markovien. In: Proceedings of the sixth Franco-Belgian meeting of statisticians

  • Hallin M, Lu Z, Yu K (2009) Local linear spatial quantile regression. Bernoulli 15:659–686

    Article  MathSciNet  MATH  Google Scholar 

  • Jones MC, Park H, Shinb K, Vines SK, Jeong SO (2008) Relative error prediction via kernel regression smoothers. J Stat Plan Inference 138:2887–2898

    Article  MathSciNet  MATH  Google Scholar 

  • Li J, Tran LT (2009) Nonparametric estimation of conditional expectation. J Stat Plan Inference 139:164–175

    Article  MathSciNet  MATH  Google Scholar 

  • Liu X, Lu CT, Chen F (2010) Spatial outlier detection: random walk based approaches. In: Proceedings of the 18th ACM SIGSPATIAL international conference on advances in geographic information systems (ACM GIS), San Jose, CA

  • Lu Z, Chen X (2004) Spatial kernel regression: weak consistency. Stat Probab Lett 68:125–136

    Article  MathSciNet  MATH  Google Scholar 

  • Martnez J, Saavedra J, Garca-Nieto PJ, Pieiro JI, Iglesias C, Taboada J, Sancho J, Pastor J (2014) Air quality parameters outliers detection using functional data analysis in the Langreo urban area (Northern Spain). Appl Math Comput 241:1–10

    Article  MathSciNet  MATH  Google Scholar 

  • Narula SC, Wellington JF (1977) Prediction, linear regression and the minimum sum of relative errors. Technometrics 19:185–190

    Article  MATH  Google Scholar 

  • Omidi M, Mohammadzadeh M (2015) A new method to build spatio-temporal covariance functions: analysis of ozone data. Stat Pap. doi:10.1007/s00362-015-0674-2

  • Robinson PM (2011) Asymptotic theory for nonparametric regression with spatial data. J Econom 165:5–19

    Article  MathSciNet  MATH  Google Scholar 

  • Shen VY, Yu T, Thebaut SM (1985) Identifying error-prone softwarean empirical study. IEEE Trans Softw Eng 11:317–324

    Article  Google Scholar 

  • Tran LT (1990) Kernel density estimation on random fields. J Multivar Anal 34:37–53

    Article  MathSciNet  MATH  Google Scholar 

  • Volker S (2014) Stochastic geometry, spatial statistics and random fields: models and algorithms. Lecture Notes in Mathematics, vol 2120. Springer, New York

  • Xu R, Wang J (2008) \(L_1\)- estimation for spatial nonparametric regression. J Nonparametric Stat 20:523–537

    Article  MathSciNet  MATH  Google Scholar 

  • Yang Y, Ye F (2013) General relative error criterion and M-estimation. Front Math China 8:695–715

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors greatly thank an Associate Editor and an anonymous referee for a careful reading of the paper. The authors also thank Campus France (France) and Agence Thmatique de Recherche en Sciences et Technologie for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Laksaci.

Appendix

Appendix

Proof of Theorem 1 Let

$$\begin{aligned} \widetilde{\theta }(x)=\frac{\widetilde{g_1}(x)}{\widetilde{g_2}(x)} \end{aligned}$$

with

$$\begin{aligned} \widetilde{g_l}(x)=\frac{1}{\widehat{\mathbf {n}}h^d}\sum _{{\mathbf {i}\in \mathcal {I}_\mathbf {n}}}Y^{-l}_\mathbf{i}K(h^{-1}(x-X_\mathbf{i}))\quad \hbox { for }l=1,2. \end{aligned}$$

Next, we use the following decomposition:

$$\begin{aligned} \widetilde{\theta }(x)-\theta (x)=\frac{1}{\widetilde{g_2}(x)}\Big [\widetilde{g_1}(x)-g_1(x)\Big ]+\left[ g_2(x)-\widetilde{g_2}(x)\right] \frac{\theta (x)}{\widetilde{g_2}(x)} \end{aligned}$$
(6)

Thus, Theorem 1 is a consequence of the following intermediate results (cf. Lemmas 1 and 2).

Lemma 1

Under hypotheses (H1), (H2), and (H5), we have, for \(l=1,2\), that:

$$\begin{aligned} \left| E\widetilde{g_l}(x)-g_l(x)\right| =O(h^2). \end{aligned}$$

Proof of Lemma 1

By a change of variables, we get, for \(l=1,2\),

$$\begin{aligned} E[ \widetilde{g_l}(x)]= & {} \frac{1}{h^d}\int _{{\mathbbm {R}}^d}E[Y^{-l}|X=u)]K\left( \frac{x-u}{h}\right) f(u)\,du\\= & {} \int _{{\mathbbm {R}}^d}g_l (x-hz)K(z)\, dz. \end{aligned}$$

Since both functions f and \(r_l\) are of class \(\mathcal{C}^2\), we use a Taylor expansion of \(g_l(\cdot )\) to write, under (H4)

$$\begin{aligned} \left| E[ \widetilde{g_l}(x)]-g_l(x)\right| \le C h^2. \end{aligned}$$

The last result complete the proof of lemma. \(\square \)

Lemma 2

Under hypotheses (H3)–(H7), we have, for \(l=1,2\), that:

$$\begin{aligned} \sup _{x\in S}|\widetilde{g_l}(x)-E\widetilde{g_l}(x)| = O_{a.co.}\left( \sqrt{\frac{ \log \widehat{\mathbf {n}}}{\widehat{\mathbf {n}} h^d}}\right) . \end{aligned}$$

Proof of Lemma 2

Consider

$$\begin{aligned} \widetilde{g_l}^*(x) =\frac{1}{\widehat{\mathbf {n}}h^d}\sum _{{\mathbf {i}\in \mathcal {I}_\mathbf {n}}}K\Big (h^{-1}(x-X_i)\Big )Y_i^{-l} {\mathbbm {1}}_{|Y_i^{-1}|<\mu _\mathbf{n} }\;\;\text{ with }\; {\mu }_\mathbf{n}=\widehat{\mathbf {n}}^{\gamma /2}. \end{aligned}$$

Therefore, it suffices to prove the following intermediates results

$$\begin{aligned} \sup _{x\in S}\left| E[ \widetilde{g_l}^* (x)]- E[ \widetilde{g_l}(x)]\right| = O\left( \sqrt{\frac{ \log \widehat{\mathbf {n}}}{\widehat{\mathbf {n}}h^d}}\right) , \end{aligned}$$
(7)
$$\begin{aligned} \sup _{x\in S}\left| \widetilde{g_l}^* (x)- \widetilde{g_l} (x)\right| = O_{a. co.}\left( \sqrt{\frac{ \log \widehat{\mathbf {n}}}{\widehat{\mathbf {n}}h^d}}\right) \end{aligned}$$
(8)

and

$$\begin{aligned} \sup _{x\in S} \left| \widetilde{g_l}^* (x)-E[ \widetilde{g_l}^* (x)] \right| = O_{a. co.}\left( \sqrt{\frac{ \log \widehat{\mathbf {n}}}{\widehat{\mathbf {n}}h^d}}\right) . \end{aligned}$$
(9)
  • Firstly, for (9), we use the compactness of S to write

$$\begin{aligned} S \subset \bigcup _{j=1}^{d_\mathbf{n}} B(x_k,\tau _\mathbf{n}), \end{aligned}$$

with \(d_\mathbf{n}\le \widehat{\mathbf {n}}^{\beta }\) and \(\tau _\mathbf{n}\le d_\mathbf{n}^{-1}\) where \(\beta =\frac{\delta (d+2)}{2}+\frac{1}{2}+\frac{\gamma }{2} \). So, for all \(x\in S\), we pose

$$\begin{aligned} k(x)=\displaystyle \mathrm{arg\min }_{k\in \{1,\ldots d_\mathbf{n}\}}\ \Vert x-x_k\Vert . \end{aligned}$$

Thus, for \(l=1,2\),

$$\begin{aligned} \sup _{x\in S}\left| \widetilde{g_l}^*(x) - E\Big [\widetilde{g_l}^*(x)\Big ]\right|\le & {} \underbrace{\sup _{x\in S}\left| \widetilde{g_l}^*(x)-\widetilde{g_l}^*(x_{k(x)})\right| }_{T_1}\\&+\underbrace{\sup _{x\in S} \left| \widetilde{g_l}^*(x_{k(x)})- E\left[ \widetilde{g_l}^*(x_{k(x)})\right] \right| }_{T_2}\\&+ \underbrace{\sup _{x\in S}\left| E\Big [\widetilde{g_l}^*(x_{k(x)})\Big ]- E\Big [\widetilde{g_l}^*(x)\Big ]\right| }_{T_3}. \end{aligned}$$
  • Furthermore, for \(T_2\), for both \(l=1,2\), we have

    $$\begin{aligned} \sup _{x\in S} \left| \widetilde{g_l}^*(x_{k(x)})- E\left[ \widetilde{g_l}^*(x_{k(x)})\right] \right| =\max _{k=1,\ldots d_\mathbf{n}} \left| \widetilde{g_l}^*(x_{k})- E\left[ \widetilde{g_l}^*(x_{k)})\right] \right| \end{aligned}$$

    Thus it suffices to evaluate almost completely

    $$\begin{aligned} \max _{k=1,\ldots d_\mathbf{n}} \left| \widetilde{g_l}^*(x_{k})- E\left[ \widetilde{g_l}^*(x_{k})\right] \right| . \end{aligned}$$

    To do that, we write:

    $$\begin{aligned} \widetilde{g_l}^* (x_k)-E[ \widetilde{g_l}^* (x_k)]= & {} {1\over \widehat{\mathbf {n}}h^d}\sum _{{\mathbf {i}\in \mathcal {I}_\mathbf {n}}}\Delta _{\mathbf {i}} \end{aligned}$$

    where

    $$\begin{aligned} \Delta _\mathbf{i}=Y^{-l}_\mathbf{i}K(h^{-1}(x_k-X_\mathbf{i})){\mathbbm {1}}_{(|Y_\mathbf{i}^{-1}|< \mu _\mathbf{n})}-E\left[ Y^{-l} K(h^{-1}(x_k-X)){\mathbbm {1}}_{(|Y^{-1}|< \mu _\mathbf{n})}\right] . \end{aligned}$$

    Now, similarly to Tran (1990), we use the classical spatial block decomposition for the sum \(\displaystyle \sum _{{\mathbf {i}\in \mathcal {I}_\mathbf {n}}}\Delta _{\mathbf {i}}\) as follows

    $$\begin{aligned} U(1,\mathbf {n},\mathbf {j})=\sum _{\begin{array}{c} i_k=2j_kp_{\mathbf {n}}+1\\ k=1,...,N \end{array}}^{2j_kp_{\mathbf {n}}+p_{\mathbf {n}}}\Delta _{\mathbf {i}}, \end{aligned}$$
    $$\begin{aligned} U(2,\mathbf {n},\mathbf {j})=\displaystyle \sum _{\begin{array}{c} i_k=2j_kp_{\mathbf {n}}+1\\ k=1,...,N-1 \end{array}}^{2j_kp_{\mathbf {n}}+p_{\mathbf {n}}} \quad \displaystyle \sum _{i_N=2j_Np_{\mathbf {n}}+p_{\mathbf {n}}+1}^{(j_N+1)p_{\mathbf {n}}}\Delta _{\mathbf {i}}, \end{aligned}$$
    $$\begin{aligned} U(3,\mathbf {n},\mathbf {j})=\displaystyle \sum _{\begin{array}{c} i_k=2j_kp_{\mathbf {n}}+1\\ k=1,...,N-2 \end{array}}^{2j_kp_{\mathbf {n}}+p_{\mathbf {n}}} \quad \displaystyle \sum _{i_{N-1}=2j_{N-1}p_{\mathbf {n}}+p_{\mathbf {n}}+1}^{2(j_{N-1}+1)p_{\mathbf {n}}} \quad \displaystyle \sum _{i_N=2j_Np_{\mathbf {n}}+1}^{2j_Np_{\mathbf {n}}+p_{\mathbf {n}}}\Delta _{\mathbf {i}}, \end{aligned}$$
    $$\begin{aligned} U(4,\mathbf {n},\mathbf {j})=\displaystyle \sum _{\begin{array}{c} i_k=2j_kp_{\mathbf {n}}+1\\ k=1,...,N-2 \end{array}}^{2j_kp_{\mathbf {n}}} \quad \displaystyle \sum _{i_{N-1}=2j_{N-1}p_{\mathbf {n}}+p_{\mathbf {n}}+1}^{2(j_{N-1}+1)p_{\mathbf {n}}}\quad \displaystyle \sum _{i_N=2j_Np_{\mathbf {n}}+p_{\mathbf {n}}+1}^{2(j_N+1)p_{\mathbf {n}}}\Delta _{\mathbf {i}}, \end{aligned}$$

    and so on. Finally

    $$\begin{aligned} U(2^{N-1},\mathbf {n},\mathbf {j})=\displaystyle \sum _{\begin{array}{c} i_k=2j_kp_{\mathbf {n}}+p_{\mathbf {n}}+1\\ k=1,...,N-1 \end{array}}^{2(j_k+1)p_{\mathbf {n}} }\quad \displaystyle \sum _{i_N=2j_Np_{\mathbf {n}}+1}^{2j_Np_{\mathbf {n}}+p_{\mathbf {n}}}\Delta _{\mathbf {i}}, \end{aligned}$$
    $$\begin{aligned} U(2^N,\mathbf {n},\mathbf {j})=\sum _{\begin{array}{c} i_k=2j_kp_{\mathbf {n}}+p_{\mathbf {n}}+1\\ k=1,...,N \end{array}}^{2(j_k+1)p_{\mathbf {n}}} \Delta _{\mathbf {i}} \end{aligned}$$
    (10)

    with \( p_{\mathbf {n}}\) is a real sequence will be specified later. Now, we put for all \(i = 1, \ldots ,2^N\),

    $$\begin{aligned} T(\mathbf {n},i)=\sum _{\mathbf {j}\in \mathcal {J}}U(i,\mathbf {n},\mathbf {j}). \end{aligned}$$
    (11)

    with \(\mathcal {J}=\{0,...,r_1-1\}\times ...\times \{0,...,r_N-1\}\) and \(r_l =2 n_lp_{\mathbf {n}}^{-1}\); \(l=1,\ldots , N\). Then,

    $$\begin{aligned} \left| \widetilde{g_l}^* (x_k)-E[ \widetilde{g_l}^* (x_k)]\right| =\frac{1}{\widehat{\mathbf {n}}h^d}\displaystyle \sum _{i=1}^{2^N}T(\mathbf {n},i). \end{aligned}$$

    Thus, all it remains to compute

    $$\begin{aligned} \displaystyle {\mathbbm {P}}\left( T(\mathbf {n},i)\ge \eta \widehat{\mathbf {n}}h^d\right) ,\,\qquad \text{ for } \text{ all } i=1,\ldots , 2^N . \end{aligned}$$
    (12)

    Without loss of generality, we will only consider the case \(i=1\). For this, we enumerate the \(M=\prod _{k=1}^N r_k=2^{-N}\widehat{\mathbf {n}}p_{\mathbf {n}}^{-N}\le \widehat{\mathbf {n}}p_{\mathbf {n}}^{-N}\) random variables \(U(1,\mathbf {n},\mathbf {j});\, \mathbf {j}\in \mathcal {J}\) in the arbitrary way \(Z_1,\ldots Z_M\). The rest of the proof is very similar to Biau and Cadre (2004) which is based on Lemma 4.5 of Carbon et al. (1997). According this Lemma we can find independent random variables \(Z_1^*,\ldots Z_M^*\) has the same low as \(Z_{j=1,\ldots M}\) and such that

    $$\begin{aligned} \sum _{j=1}^r E|Z_{\mathbf {j}}-Z_{\mathbf {j}}^*|\le 2C\mu _\mathbf{n} Mp_{\mathbf {n}}^Ns(M-1)p_{\mathbf {n}}^N,p_{\mathbf {n}}^N)\varphi (p_{\mathbf {n}}). \end{aligned}$$

    It follows that

    $$\begin{aligned} \displaystyle {\mathbbm {P}}\left( T(\mathbf {n},1)\ge \eta \widehat{\mathbf {n}}h^d \right) \le {\mathbbm {P}}\left( \left| \sum _{j=1}^MZ_{\mathbf {j}}^*\right| \ge \frac{\eta \widehat{\mathbf {n}}h^d}{2}\right) +{\mathbbm {P}}\left( \sum _{j=1}^M|Z_{\mathbf {j}}-Z_{\mathbf {j}}^*|\ge \frac{\eta \widehat{\mathbf {n}}h^d}{2}\right) . \end{aligned}$$

    Thus, from the Bernstein and Markov inequalities we deduce that

    $$\begin{aligned} \displaystyle B_1:={\mathbbm {P}}\left( \left| \sum _{j=1}^MZ_{\mathbf {j}}^*\right| \ge \frac{M\eta \widehat{\mathbf {n}}h^d}{2M}\right) \le 2\exp \left( -\frac{(\eta \widehat{\mathbf {n}}h^d)^2}{ MVar\left( Z_1^*\right) +Cp_{\mathbf {n}}^N\eta \widehat{\mathbf {n}}h^d}\right) \end{aligned}$$

    and

    $$\begin{aligned} \displaystyle B_2:= & {} {\mathbbm {P}}\left( \sum _{j=1}^M|Z_{\mathbf {j}}-Z_{\mathbf {j}}^*|\ge \frac{\eta \widehat{\mathbf {n}}h^d}{2}\right) \le \frac{2}{\eta \widehat{\mathbf {n}}h^d}\sum _{j=1}^M E|Z_{\mathbf {j}}-Z_{\mathbf {j}}^*|. \end{aligned}$$

    By using Lemma 4.5 of Carbon et al. (2007), the fact that \(\displaystyle \widehat{\mathbf {n}}=2^NMp_{\mathbf {n}}^N\) and \(s((M-1)p_{\mathbf {n}}^N,p_{\mathbf {n}}^N)\le p_{\mathbf {n}}^N\) we get for \(\eta =\displaystyle \eta _0\sqrt{\frac{\log \widehat{\mathbf {n}}}{\widehat{\mathbf {n}}\, h^d}}\)

    $$\begin{aligned} B_2\le \mu _\mathbf{n} \widehat{\mathbf {n}} p_{\mathbf {n}}^N\left( \log \widehat{\mathbf {n}}\right) ^{-1/2}\left( \widehat{\mathbf {n}}h^d\right) ^{-1/2}\varphi (p_{\mathbf {n}}). \end{aligned}$$

    Since \(p_{\mathbf {n}}= C\left( \frac{\widehat{\mathbf {n}}h^d}{\log \widehat{\mathbf {n}} \mu _\mathbf{n}^2}\right) ^{1/2N}\), then

    $$\begin{aligned} B_2 \le \widehat{\mathbf {n}}\, \left( \log \widehat{\mathbf {n}}\right) ^{-1} \,\varphi (p_{\mathbf {n}}). \end{aligned}$$

    Concerning \(B_1\) term, by a standard arguments we obtain

    $$\begin{aligned} Var\left[ Z_1^*\right] =O\left( p_{\mathbf {n}}^Nh^d\right) . \end{aligned}$$

    Using this last result, together with the definitions of \(p_{\mathbf {n}}\), M and \(\eta \), we get

    $$\begin{aligned} B_1 \le \exp \left( -C(\eta _0)\log \widehat{\mathbf {n}} \right) \end{aligned}$$

    Consequently, from (H6), we have

    $$\begin{aligned} \exists \eta _0 \quad \text{ such } \text{ that } \quad d_\mathbf{n}\sum _{\mathbf {n}}(B_1+B_2)<\infty . \end{aligned}$$

    which complete the first result of this lemma.

  • Now, we evaluate terms \(T_1\) and \(T_3\): To do that, we use the Lipschitz’s condition of the kernel K in (H4) allows to write directly,

    $$\begin{aligned} \left| \widetilde{g_l}^*(x)- \widetilde{g_l}^*(x_{k(x)})\right|= & {} \frac{1}{\widehat{\mathbf {n}}h^d}\left| \sum _{{\mathbf {i}\in \mathcal {I}_\mathbf {n}}}Y_\mathbf{i}^{-l}K_\mathbf{i}(x)- \sum _{{\mathbf {i}\in \mathcal {I}_\mathbf {n}}}Y_\mathbf{i}^{-l}K_\mathbf{i}(x_{k(x)})\right| \\\le & {} \frac{C}{\widehat{\mathbf {n}}h^{d+1}}\Vert x- x_{k(x)}\Vert \sum _{{\mathbf {i}\in \mathcal {I}_\mathbf {n}}}Y_\mathbf{i}^{-l}\\\le & {} \frac{C\tau _\mathbf{n} }{\mu _\mathbf{n}^{l}\widehat{\mathbf {n}}h^{d+1}}\le \frac{C\tau _\mathbf{n} }{\mu _\mathbf{n}\widehat{\mathbf {n}}h^{d+1}}. \end{aligned}$$

By the definition of \(\tau _\mathbf{n}\) we obtain

$$\begin{aligned} \sup _{x\in S}\left| \widetilde{g_l}^*(x)- \widetilde{g_l}^*(x_{k(x)})\right| =O\left( \sqrt{\frac{ \log \widehat{\mathbf {n}}}{\widehat{\mathbf {n}}h^d}}\right) \end{aligned}$$
(13)

and

$$\begin{aligned} \sup _{x\in S}\left| E\Big [ \widetilde{g_l}^*(x)\Big ]- E\Big [ \widetilde{g_l}^*(x_{k(x)})\Big ]\right| =O\left( \sqrt{\frac{ \log \widehat{\mathbf {n}}}{\widehat{\mathbf {n}}h^d}}\right) \end{aligned}$$
(14)
  • Secondly, we proof (7). Indeed, we have

    $$\begin{aligned} \sup _{x\in S} \left| E\left[ \widetilde{g_l} (x)\right] - E\left[ \widetilde{g_l}^* (x)\right] \right|= & {} \frac{1}{\widehat{\mathbf {n}}h^d}\left| E\left[ \displaystyle \sum _{{\mathbf {i}\in \mathcal {I}_\mathbf {n}}}Y_\mathbf{i}^{-l}{\mathbbm {1}}_{\{|Y_\mathbf{i}^{-1}|> {\mu }_\mathbf{n}\}}K_\mathbf{i}(x)\right] \right| \\\le & {} h^{-d} E\left[ |Y_\mathbf{1}^{-l}|{\mathbbm {1}}_{\{|Y_\mathbf{i}^{-1}|>{\mu }_\mathbf{n}\}}K_\mathbf{1}(x)\right] \\\le & {} h^{-d}E\left[ \exp \left( |Y_{1}^{-l}|/4\right) {\mathbbm {1}}_{\{|Y_\mathbf{i}^{-1}|>\mu _{n}\}}K_\mathbf{1}(x)\right] . \end{aligned}$$

    Furthermore, using The Holder’s inequality to show that,

    $$\begin{aligned} \sup _{x\in S}\left| E\left[ \widetilde{g_l} (x)\right] - E\left[ \widetilde{g_l}^* (x)\right] \right|\le & {} h^{-d} \left( E\left[ \exp \left( |Y_{1}^{-l}|/2\right) {\mathbbm {1}}_{\{Y_\mathbf{i}^{-1}|>{\mu }_{n}\}}\right] \right) ^{\frac{1}{2}} \left( E(K^{2}_\mathbf{1}(x))\right) ^{\frac{1}{2}}\\\le & {} h^{-d}\exp \left( -\mu _\mathbf{n}^l/4\right) \left( E\left[ \exp \left( |Y^{-l}|\right) \right] \right) ^{\frac{1}{2}}\left( E(K^{2}_\mathbf{1}(x)\right) ^{\frac{1}{2}} \\\le & {} C h^{\frac{-d}{2}}\exp \left( -{\mu }_\mathbf{n}^l/4\right) . \end{aligned}$$

    Since \(\mu _\mathbf{n}=\widehat{\mathbf {n}}^{\gamma /2}\) then, we can write

    $$\begin{aligned} \sup _{x\in S} \left| E\left[ \widetilde{g_l} (x_k)\right] - E\left[ \widetilde{g_l}^* (x_k)\right] \right| =o\left( \left( \frac{ \log \widehat{\mathbf {n}}}{\widehat{\mathbf {n}}h^d}\right) ^{1/2}\right) . \end{aligned}$$
  • Thirdly, the proof of the last claimed result (8) is based on the Markov’s inequality. Indeed, observe that, for all \( \epsilon >0\)

    $$\begin{aligned} {\mathbbm {P}}\left[ \sup _{x\in S}\left| \widetilde{g_l} (x)- \widetilde{g_l}^* (x)\right| >\epsilon \right]= & {} {\mathbbm {P}}\left( \frac{1}{\widehat{\mathbf {n}}h^d}\displaystyle \sum _{{\mathbf {i}\in \mathcal {I}_\mathbf {n}}}Y_\mathbf{i}^{-l}{\mathbbm {1}}_{|Y_\mathbf{i}^{-l}| >{\mu }_\mathbf{n}^l}K_{i}|>\epsilon \right) \\\le & {} \widehat{\mathbf {n}}{\mathbbm {P}}\left( \displaystyle |Y^{-l}|>{\mu }_\mathbf{n}\right) \\\le & {} \widehat{\mathbf {n}}\exp \left( -{\mu }_\mathbf{n}^l\right) E\left( \exp \left( |Y^{-1}|\right) \right) \\\le & {} C\widehat{\mathbf {n}}\exp \left( -{\mu }_\mathbf{n}^l\right) . \end{aligned}$$

    So,

    $$\begin{aligned} \displaystyle \sum _\mathbf{n}{\mathbbm {P}}\left( \sup _{x\in S}\left| \widetilde{g_l} (x)- \widetilde{g_l}^* (x)\right| >\epsilon _0\left( \sqrt{\frac{ \log \widehat{\mathbf {n}}}{\widehat{\mathbf {n}}h^d}}\right) \right) \le C\displaystyle \sum _\mathbf{n}\widehat{\mathbf {n}}\exp \left( -\mu _\mathbf{n}\right) . \end{aligned}$$
    (15)

    The use of the definition \(\mu _\mathbf{n}\) complete the proof of Lemma. \(\square \)

Corollary 2

Under the hypotheses of Theorem 1, we obtain:

$$\begin{aligned} \sum _\mathbf{n}{\mathbbm {P}}\left( \inf _{x\in S}| \widetilde{g_2}(x)|\le \frac{\inf _{x\in S }g_2(x)}{2}\right) <\infty . \end{aligned}$$

Proof of Corollary 2

It is clear that

$$\begin{aligned} \inf _{x\in S } \widetilde{g_2}(x)< \frac{\inf _{x\in S }g_2(x)}{2}\Rightarrow \sup _{x\in S } |g_2(x)- \widetilde{g_2}(x)|> \frac{\inf _{x\in S }g_2(x)}{2}. \end{aligned}$$

Thus,

$$\begin{aligned} {\mathbbm {P}}\left( \inf _{x\in S}| \widetilde{g_2}(x)|\le \frac{\inf _{x\in S }g_2(x)}{2}\right)\le & {} {\mathbbm {P}}\left( \sup _{x\in S}|g_2(x)- \widetilde{g_2}(x)|\ge \frac{\inf _{x\in S }g_2(x)}{2}\right) . \end{aligned}$$

The use of the results of Lemma 1 and Lemma 2 complete the proof of the corollary. \(\square \)

Proof of Theorem 2 We write:

$$\begin{aligned} \widetilde{\theta }(x)- \theta (x)= \frac{1}{\widetilde{g_2}(x)} \left[ B_\mathbf{n}+V_\mathbf{n} \left( \widetilde{g_2}(x)-E\widetilde{g_2}(x)\right) \right] +V_\mathbf{n} \end{aligned}$$

where

$$\begin{aligned} V_\mathbf{n}=\frac{1}{E\widetilde{g_2}(x)g_2(x)}\left[ \Big [E\widetilde{g_1}(x)\Big ]g_2(x)-\Big [E\widetilde{g_2}(x)\Big ]g_1(x)\right] \end{aligned}$$

and

$$\begin{aligned} B_\mathbf{n}=\frac{1}{g_2(x)} \left[ \Big [\widetilde{g_1}(x)-E\widetilde{g_1}(x)\Big ]g_2(x)+\Big [E\widetilde{g_2}(x)-\widetilde{g_2}(x)\Big ]g_1(x)\right] . \end{aligned}$$

Therefore,

$$\begin{aligned} \widetilde{\theta }(x)- \theta (x)-V_\mathbf{n}= \frac{1}{\widetilde{g_2}(x)} \left[ B_\mathbf{n}+V_\mathbf{n} \left( \widetilde{g_2}(x)-E\widetilde{g_2}(x)\right) \right] \end{aligned}$$
(16)

Finally, Theorem 2 is a consequence of the following results (cf. Lemmas 3 and 4).

Lemma 3

Under the hypotheses of Theorem 2, we obtain:

$$\begin{aligned} \left( \frac{\widehat{\mathbf {n}}h^d}{g_2^2(x)\sigma ^2(x)}\right) ^{1/2}\left( B_\mathbf{n}-{\mathrm {E}}[B_\mathbf{n}]\right) \rightarrow N(0,1). \end{aligned}$$

Proof of Lemma 3

Considering the same notations of Lemma 1 and write,

$$\begin{aligned} B_\mathbf{n}=B_\mathbf{n}-B_\mathbf{n}^*+B_\mathbf{n}^* \end{aligned}$$

where

$$\begin{aligned} B_\mathbf{n}^*=\frac{1}{g_2(x)} \left[ \Big [\widetilde{g_1}^*(x)-E\widetilde{g_1}^*(x)\Big ]g_2(x)+\Big [E\widetilde{g_2}^*(x)-\widetilde{g_2}^*(x)\Big ]g_1(x)\right] . \end{aligned}$$

Similarly to Lemma 1 we get, for fixed \(x\in {\mathbbm {R}}^d\)

$$\begin{aligned} \left( \frac{\widehat{\mathbf {n}}h^d}{\left( g_2(x)\right) ^2 \sigma ^2(x)}\right) ^{1/2}\left| \widehat{g_l}(x)- \widehat{g_l}^*(x)\right| =o_p(1). \end{aligned}$$

As \({\mathrm {E}}[B_\mathbf{n}]={\mathrm {E}}[B_\mathbf{n}^*]=0\), then it suffices to show the asymptotic normality of

$$\begin{aligned} \left( \frac{\widehat{\mathbf {n}}h^d}{\left( g_2(x)\right) ^2 \sigma ^2(x)}\right) ^{1/2}\left| B_\mathbf{n}^*- E\left[ B_\mathbf{n}^*\right] \right| . \end{aligned}$$

For this, we put, for \(\mathbf{i=1}\in I_\mathbf{n},\)

$$\begin{aligned} \Lambda _{\mathbf {i}}:= & {} \frac{1}{\sqrt{h^d}}\left( K_i(Y_\mathbf{i}^{-1}g_2(x)-Y_\mathbf{i}^{-2}g_1(x)){\mathbbm {1}}_{|Y_\mathbf{i}^{-1}|<\mu _\mathbf{n} }\right. \nonumber \\&\left. -E\left[ K_i(Y_\mathbf{i}^{-1}g_2(x)-Y_\mathbf{i}^{-2}g_1(x)){\mathbbm {1}}_{|Y_\mathbf{i}^{-1}|<\mu _\mathbf{n} }\right] \right) . \end{aligned}$$

So,

$$\begin{aligned} \sqrt{\widehat{\mathbf {n}}h^d}\left[ \sigma _1(x)\right] ^{-1} \Big (B_\mathbf{n}^*-E\left[ B_\mathbf{n}^*\right] \Big )=\left( \widehat{\mathbf {n}}\sigma _1^2(x))\right) ^{-1/2}S_{\mathbf {n}} \end{aligned}$$

where \( S_{\mathbf {n}}= \displaystyle \sum _{\mathbf{i}\in I_\mathbf{n}}\Lambda _\mathbf{i}\). Thus, our claimed result is, now

$$\begin{aligned} \left( \widehat{\mathbf {n}}\sigma _1^2(x))\right) ^{-1/2}S_{\mathbf {n}}\rightarrow \mathcal {N}(0,1). \end{aligned}$$
(17)

where \(\sigma _1^2(x)=\left( g_2(x)\right) ^2 \sigma ^2(x)\). The proof of (17) follows the same lines of Lemma 3.2 in Tran (1990). It is based on spatial blocking technique for \( S_{\mathbf {n}}=\displaystyle \sum _{\mathbf{i}\in I_\mathbf{n}}\Lambda _\mathbf{i}\).

Lemma 4

Under the hypotheses of Theorem 2, we obtain:

$$\begin{aligned} \widetilde{g}_2(x)\rightarrow g_2(x), \hbox { in probability,} \end{aligned}$$
$$\begin{aligned} \left( \frac{\widehat{\mathbf {n}}h^d}{g_2(x)^2\sigma ^2(x)}\right) ^{1/2}V_\mathbf{n} \rightarrow 0, \end{aligned}$$

and

$$\begin{aligned} \left( \frac{\widehat{\mathbf {n}}h^d}{g_2(x)^2\sigma ^2(x)}\right) ^{1/2}V_\mathbf{n} \left( \widetilde{g_2}(x)-E\widetilde{g_2}(x)\right) \rightarrow 0, \hbox {in probability}. \end{aligned}$$

Proof of Lemma 4 For the first limit, we have, by Lemma 1

$$\begin{aligned} E\left[ \widetilde{g}_2(x)-g_2(x))\right] \rightarrow 0 \end{aligned}$$

and by a similar argument as those used in the variance term in Lemma 2 we show that

$$\begin{aligned} Var\left[ \widetilde{g}_2(x)\right] \rightarrow 0 \end{aligned}$$

hence

$$\begin{aligned} \widetilde{g}_2(x)-g_2(x)\rightarrow 0\quad \text{ in } \text{ probability. } \end{aligned}$$

Next, it is clear that the second limit is consequence for the last convergence. So, it suffices to treat the last one. For this, we use the fact that

$$\begin{aligned} Var\left[ \left( \widetilde{g_2}(x)-E\widetilde{g_2}(x)\right) \right] = Var\left[ \widetilde{g}_2(x)\right] \rightarrow 0 \end{aligned}$$

and

$$\begin{aligned} V_\mathbf{n}=O(h^2) \quad \text{(see, } \text{ Lemma } \text{1) } \end{aligned}$$

The last part of Condition (H6\(^{\prime }\)) allows to deduce that

$$\begin{aligned} \left( \frac{\widehat{\mathbf {n}}h^d}{g_1(x)^2\sigma ^2(x)}\right) ^{1/2}V_\mathbf{n} \left( \widetilde{g_2}(x)-E\widetilde{g_2}(x)\right) )\rightarrow 0\quad \text{ in } \text{ probability. } \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attouch, M., Laksaci, A. & Messabihi, N. Nonparametric relative error regression for spatial random variables. Stat Papers 58, 987–1008 (2017). https://doi.org/10.1007/s00362-015-0735-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-015-0735-6

Keywords

Mathematics Subject Classification

Navigation