Log in

Flower detection and acuity of the Australian native stingless bee Tetragonula carbonaria Sm.

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

An Erratum to this article was published on 29 August 2016

Abstract

We tested the endemic Australian Tetragonula carbonaria bee as a model of how colour vision may allow these small bees to find flowers. In a Y-Maze apparatus, we presented stimuli that contained both chromatic- and green-receptor contrasts, or only had chromatic contrast to free flying bees. Stimuli were detected at visual angles of 9.5° and 9.3°, respectively. We next made morphological measurements of the compound eye under high magnification using a digital microscope, and despite a relatively small eye size with a surface area of 0.64 ± 0.02 mm2, the compound eye contained 3010 ± 10 ommatidia. Measurements of diverging rays of light using antidromic illumination revealed a mean interommatidial angle in the frontal visual field measures 1.56° ± 0.10°. Finally, we calculate that the minimum number of ommatidia that need to be excited for object detection is 33, which is much higher than for object detection in bumblebees and for the detection of objects providing both colour and green contrasts by honeybees, but lower for the detection of an object lacking green contrast in honeybees. We discuss reasons that may explain potential tradeoff for foraging bees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Armstrong J (1979) Biotic pollination mechanisms in the Australian flora—a review. N Z J Bot 17:467–508

    Article  Google Scholar 

  • Autrum H, v Zwehl V (1964) Die spektrale Empfindlichkeit einzelner Sehzellen des Bienenauges. Z Vergl Physiol 48:357–384

    Article  Google Scholar 

  • Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Annu Rev Entomol 46:471–510

    Article  CAS  PubMed  Google Scholar 

  • Bukovac Z, Dorin A, Dyer A (2013) A-bees see: a simulation to assess social bee visual attention during complex search tasks. In: Liò et al. (eds) Proceedings of the 12th European Conference on Artificial Life (ECAL). MIT Press,Taormina, September 2–6, pp 276–283

  • Cardinal S, Straka J, Danforth BN (2010) Comprehensive phylogeny of apid bees reveals the evolutionary origins and antiquity of cleptoparasitism. Proc Nat Acad Sci USA 107:16207–16211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chittka L (1992) The colour hexagon: a chromaticity diagram based on photoreceptor excitations as a generalized representation of colour opponency. J Comp Physiol A 170:533–543

    Google Scholar 

  • Chittka L, Menzel R (1992) The evolutionary adaptation of flower colours and the insect pollinators’ colour vision. J Comp Physiol A 171:171–181. doi:10.1007/BF00188925

    Article  Google Scholar 

  • Chittka L, Thomson JD, Waser NM (1999) Flower constancy, insect psychology, and plant evolution. Naturwissenschaften 86(8):361–377

    Article  CAS  Google Scholar 

  • Dollin A, Dollin A (2010) Introduction to Australian Native Bees. In: Dollin A (ed) Native bees of Australia, vol 1, 2nd edn. Australian Native Bee Research Centre, North Richmond, pp 1–10

    Google Scholar 

  • Dornhaus A, Chittka L (2003) Why do honey bees dance? Behav Ecol Sociobiol 55:395–401. doi:10.1007/s00265-003-0726-9

    Article  Google Scholar 

  • Dos Santos S, Roselino A, Hrncir M, Bego L (2009) Pollination of tomatoes by the stingless bee Melipona quadrifasciata and the honey bee Apis mellifera (Hymenoptera, Apidae). Genet Mol Res 8:751–757

    Article  PubMed  Google Scholar 

  • Dyer AG, Griffiths DW (2012) Seeing near and seeing far; behavioural evidence for dual mechanisms of pattern vision in the honeybee (Apis mellifera). J Exp Biol 215:397–404. doi:10.1242/jeb.060954

    Article  PubMed  Google Scholar 

  • Dyer AG, Whitney HM, Arnold SE, Glover BJ, Chittka L (2007) Mutations perturbing petal cell shape and anthocyanin synthesis influence bumblebee perception of Antirrhinum majus flower colour. Arthropod Plant Interact 1:45–55

    Article  Google Scholar 

  • Dyer AG, Spaethe J, Prack S (2008) Comparative psychophysics of bumblebee and honeybee colour discrimination and object detection. J Comp Physiol A 194:617–627. doi:10.1007/s00359-008-0335-1

    Article  Google Scholar 

  • Dyer AG, Boyd-Gerny S, McLoughlin S, Rosa MGP, Simonov V, Wong BBM (2012) Parallel evolution of angiosperm colour signals: common evolutionary pressures linked to hymenopteran vision. Proc R Soc Lond B 279:3606–3615. doi:10.1098/rspb.2012.0827

    Article  Google Scholar 

  • Dyer AG, Garcia JE, Shrestha M, Lunau K (2015) Seeing in colour: a hundred years of studies on bee vision since the work of the Nobel laureate Karl von Frisch. Proc R Soc Vic 127:66–72. doi:10.1071/RS15006

    Article  Google Scholar 

  • Dyer AG, Boyd-Gerny S, Shrestha M, Lunau K, Garcia JE, Koethe S, Wong BBM (2016) Innate colour preferences of the Australian native stingless bee Tetragonula carbonaria Sm. J Comp Physiol A. doi:10.1007/s00359-016-1101-4

    Google Scholar 

  • Farnier K, Dyer AG, Taylor GS, Peters RA, Steinbauer MJ (2015) Visual acuity trade-offs and microhabitat-driven adaptation of searching behaviour in psyllids (Hemiptera: Psylloidea: Aphalaridae). J Exp Biol 218:1564–1571. doi:10.1242/jeb.120808

    Article  PubMed  Google Scholar 

  • Galizia G, Eisenhardt D, Giurfa M (2011) Honeybee neurobiology and behavior: a tribute to Randolf Menzel. Springer, Heidelberg

    Google Scholar 

  • Gallai N, Salles J-M, Settele J, Vaissière BE (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 68:810–821. doi:10.1016/j.ecolecon.2008.06.014

    Article  Google Scholar 

  • Giurfa M, Vorobyev M, Kevan P, Menzel R (1996) Detection of coloured stimuli by honeybees: minimum visual angles and receptor specific contrasts. J Comp Physiol A 178:699–709. doi:10.1007/BF00227381

    Article  Google Scholar 

  • Goulson D, Cruise JL, Sparrow KR, Harris AJ, Park KJ, Tinsley MC, Gilburn AS (2007) Choosing rewarding flowers; perceptual limitations and innate preferences influence decision making in bumblebees and honeybees. Behav Ecol Sociobiol 61:1523–1529. doi:10.1007/s00265-007-0384-4

    Article  Google Scholar 

  • Halcroft M, Spooner-hart R, Dollin LA (2013) Australian stingless bees. In: Vit P, Pedro MSR, Roubik D (eds) Pot-honey a legacy of stingless bees. Springer, New York, pp 35–72. doi:10.1007/978-1-4614-4960-7_3

    Google Scholar 

  • Heard T (1988) Propagation of hives of Trigona carbonaria Smith (Hymenoptera: Apidae). J Aust Ent Soc 27:303–304

    Article  Google Scholar 

  • Heard TA (1994) Behaviour and pollinator efficiency of stingless bees and honey bees on macadamia flowers. J Apic Res 33:191–198

    Article  Google Scholar 

  • Heard TA (1999) The role of stingless bees in crop pollination. Annu Rev Entomol 44:183–206

    Article  CAS  PubMed  Google Scholar 

  • Heard T, Dollin A (1998) Crop pollination with Australian stingless bees. In: Dollin A (ed) Native bees of Australia, vol 6. Australian Native Bee Research Centre, North Richmond, pp 1–17

    Google Scholar 

  • Heard T, Hendrikz J (1993) Factors influencing flight activity of colonies of the stingless bee Trigona carbonaria (Hymenoptera, Apidae). Aust J Zool 41:343–353. doi:10.1071/ZO9930343

    Article  Google Scholar 

  • Hegland SJ, Nielsen A, Lázaro A, Bjerknes AL, Totland Ø (2009) How does climate warming affect plant–pollinator interactions? Ecol Lett 12:184–195

    Article  PubMed  Google Scholar 

  • Heinrich B (2004) Bumblebee economics. Harvard University Press, Cambridge

    Google Scholar 

  • Kakutani T, Inoue T, Tezuka T, Maeta Y (1993) Pollination of strawberry by the stingless bee, Trigona minangkabau, and the honey bee, Apis mellifera: an experimental study of fertilization efficiency. Res Popul Ecol 35:95–111. doi:10.1007/bf02515648

    Article  Google Scholar 

  • Kapustjanskij A, Streinzer M, Paulus HF, Spaethe J (2007) Bigger is better: implications of body size for flight ability under different light conditions and the evolution of alloethism in bumblebees. Funct Ecol 21:1130–1136. doi:10.1111/j.1365-2435.2007.01329.x

    Article  Google Scholar 

  • Kemp D et al (2015) An integrative framework for the appraisal of coloration in nature. Am Nat 185(6):705–724. doi:10.1086/681021

    Article  PubMed  Google Scholar 

  • Kevan PG (1972) Insect pollination of high arctic flowers. J Ecol 60:831–847

    Article  Google Scholar 

  • Klein A-M, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc Lond B 274:303–313

    Article  Google Scholar 

  • Koethe S, Bossems J, Dyer AG, Lunau K (2016) Colour is more than hue—preferences for compiled colour traits in the stingless bees Melipona mondury and M. quadrifasciata. J Comp Physiol A. doi:10.1007/s00359-016-1115-y

    Google Scholar 

  • Land M (1989) Variations in the structure and design of compound eyes. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer, Berlin, pp 90–111

    Chapter  Google Scholar 

  • Land MF (1997) Visual acuity in insects. Annu Rev Entomol 42:147–177. doi:10.1146/annurev.ento.42.1.147

    Article  CAS  PubMed  Google Scholar 

  • Land M, Chittka L (2013) Vision. In: Simpson SJ, Douglas AE (eds) The insects: structure and function. Cambridge University Press, Cambridge, pp 708–735

    Google Scholar 

  • Land M, Nilsson D-E (2002) Animal eyes. Oxford University Press, New York

    Google Scholar 

  • Laughlin S, Horridge G (1971) Angular sensitivity of the retinula cells of dark-adapted worker bee. Z Vergl Physiol 74:329–335

    Article  Google Scholar 

  • Leonard AS, Dornhaus A, Papaj DR (2011) Flowers help bees cope with uncertainty: signal detection and the function of floral complexity. J Exp Biol 214:113–121

    Article  PubMed  Google Scholar 

  • Lunau K, Papiorek S, Eltz T, Sazima M (2011) Avoidance of achromatic colours by bees provides a private niche for hummingbirds. J Exp Biol 214:1607–1612. doi:10.1242/jeb.052688

    Article  PubMed  Google Scholar 

  • Lythgoe JN (1979) The ecology of vision. Oxford University Press, New York

    Google Scholar 

  • Menzel R, Steinmann E, De Souza J, Backhaus W (1988) Spectral sensitivity of photoreceptors and colour vision in the solitary bee, Osmia rufa. J Exp Biol 136:35–52

    Google Scholar 

  • Menzel R, Ventura DF, Werner A, Joaquim LCM, Backhaus W (1989) Spectral sensitivity of single photoreceptors and color vision in the stingless bee, Melipona quadrifasciata. J Comp Physiol A 166:151–164. doi:10.1007/bf00193460

    Article  Google Scholar 

  • Michener CD (1961) Observations on the nests and behavior of Trigona in Australia and New Guinea (Hymenoptera, Apidae). Am Mus Novit 2026:1–46

    Google Scholar 

  • Michener CD (2007) The bees of the world, 2nd edn. JHU press, Baltimore

    Google Scholar 

  • Morawetz L, Spaethe J (2012) Visual attention in a complex search task differs between honeybees and bumblebees. J Exp Biol 215:2515–2523

    Article  PubMed  Google Scholar 

  • Moreno AM, de Souza DdG, Reinhard J (2012) A comparative study of relational learning capacity in honeybees (Apis mellifera) and stingless bees (Melipona rufiventris). PLoS One 7:e51467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieh JC, Tautz J, Spaethe J, Bartareau T (2000) The communication of food location by a primitive stingless bee. Zoology 102:238–246

    Google Scholar 

  • Nielsen A et al (2011) Assessing bee species richness in two Mediterranean communities: importance of habitat type and sampling techniques. Ecol Res 26:969–983

    Article  Google Scholar 

  • Norgate M, Boyd-Gerny S, Simonov V, Rosa MGP, Heard TA, Dyer AG (2010) Ambient temperature influences Australian native stingless bee (Trigona carbonaria) preference for warm nectar. PLoS One 5:e12000. doi:10.1371/journal.pone.0012000

    Article  PubMed  PubMed Central  Google Scholar 

  • Peitsch D, Fietz A, Hertel H, Souza J, Ventura D, Menzel R (1992) The spectral input systems of hymenopteran insects and their receptor-based colour vision. J Comp Physiol A 170:23–40. doi:10.1007/bf00190398

    Article  CAS  PubMed  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353. doi:10.1016/j.tree.2010.01.007

    Article  PubMed  Google Scholar 

  • Rasmussen C, Cameron SA (2010) Global stingless bee phylogeny supports ancient divergence, vicariance, and long distance dispersal. Biol J Linn Soc 99:206–232. doi:10.1111/j.1095-8312.2009.01341.x

    Article  Google Scholar 

  • R Core Team (2015) R: A language and environment for statistical computing, 3.2.3 edn. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ribi WA, Engels E, Engels W (1989) Sex and caste specific eye structures in stingless bees and honey bees (Hymenoptera: Trigonidae, Apidae). Entomol Gen 14:233–242. doi:10.1127/entom.gen/14/1989/233

    Article  Google Scholar 

  • Rohde K, Papiorek S, Lunau K (2012) Bumblebees (Bombus terrestris) and honeybees (Apis mellifera) prefer similar colours of higher spectral purity over trained colours. J Comp Physiol A 199:197–210. doi:10.1007/s00359-012-0783-5

    Article  Google Scholar 

  • Sánchez D, Vandame R (2012) Color and shape discrimination in the stingless bee Scaptotrigona mexicana Guérin (Hymenoptera, Apidae). Neotrop Entomol 41:171–177. doi:10.1007/s13744-012-0030-3

    Article  PubMed  Google Scholar 

  • Seidl R (1982) Die Sehfelder und Ommatidien-Divergenzwinkel von Arbeiterin, Königin und Drohn der Honigbiene (Apis mellifica). PhD thesis. Technische Hochschule Darmstadt

  • Sherman G, Visscher PK (2002) Honeybee colonies achieve fitness through dancing. Nature 419:920–922

    Article  CAS  PubMed  Google Scholar 

  • Shrestha M, Dyer AG, Boyd-Gerny S, Wong BBM, Burd M (2013) Shades of red: bird-pollinated flowers target the specific colour discrimination abilities of avian vision. New Phytol 198:301–310. doi:10.1111/nph.12135

    Article  PubMed  Google Scholar 

  • Skorupski P, Chittka L (2010) Differences in photoreceptor processing speed for chromatic and achromatic vision in the bumblebee, Bombus terrestris. J Neurosci 30:3896–3903

    Article  CAS  PubMed  Google Scholar 

  • Slaa EJ, Chaves LS, Malagodi-Braga KS, Hofstede FE (2006) Stingless bees in applied pollination: practice and perspectives. Apidologie 37:293

    Article  Google Scholar 

  • Snyder AW (1979) Physics of vision in compound eyes. In: Autrum H (ed) Comparative physiology and evolution of vision in invertebrates: a invertebrate photoreceptors. Springer, Berlin, pp 225–313. doi:10.1007/978-3-642-66999-6_5

    Chapter  Google Scholar 

  • Sokal R, Rohlf FJ (1981) Biometry, 2nd edn. W.H Freeman, New York

    Google Scholar 

  • Spaethe J, Chittka L (2003) Interindividual variation of eye optics and single object resolution in bumblebees. J Exp Biol 206:3447–3453

    Article  PubMed  Google Scholar 

  • Spaethe J, Tautz J, Chittka L (2001) Visual constraints in foraging bumblebees: flower size and color affect search time and flight behavior. Proc Nat Acad Sci USA 98:3898–3903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spaethe J, Streinzer M, Eckert J, May S, Dyer AG (2014) Behavioural evidence of colour vision in free flying stingless bees. J Comp Physiol A 200:485–486

    Article  CAS  Google Scholar 

  • Stavenga DG, Smits RP, Hoenders BJ (1993) Simple exponential functions describing the absorbance bands of visual pigments. Vis Res 33:1011–1017

    Article  CAS  PubMed  Google Scholar 

  • Streinzer M, Paulus HF, Spaethe J (2009) Floral colour signal increases short-range detectability of a sexually deceptive orchid to its bee pollinator. J Exp Biol 212:1365–1370

    Article  PubMed  Google Scholar 

  • Streinzer M, Brockmann A, Nagaraja N, Spaethe J (2013) Sex and caste-specific variation in compound eye morphology of five honeybee species. PLoS One 8:e57702. doi:10.1371/journal.pone.0057702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Streinzer M, Huber W, Spaethe J (2016) Body size limits dim-light foraging activity in stingless bees (Apidae: Meliponini). J Comp Physiol A. doi:10.1007/s00359-016-1118-8

    Google Scholar 

  • Von Frisch K (1914) Der Farbensinn und Formensinn der Biene. Zool Jahrb Allg Zool 37:1–187

    Google Scholar 

  • Von Frisch K (1967) The dance language and orientation of bees. Harvard University Press, Cambridge

    Google Scholar 

  • Von Helversen O (1972) Zur spektralen Unterschiedsempfindlichkeit der Honigbiene. J Comp Physiol 80:439–472

    Article  Google Scholar 

  • Vorobyev M, Brandt R, Peitsch D, Laughlin SB, Menzel R (2001) Colour thresholds and receptor noise: behaviour and physiology compared. Vis Res 41:639–653. doi:10.1016/s0042-6989(00)00288-1

    Article  CAS  PubMed  Google Scholar 

  • Warrant EJ, Porombka T, Kirchner WH (1996) Neural image enhancement allows honeybees to see at night. Proc R Soc Lond B Biol Sci 263:1521–1526

    Article  Google Scholar 

  • Wertlen AM, Niggebrügge C, Vorobyev M, Hempel de Ibarra N (2008) Detection of patches of coloured discs by bees. J Exp Biol 211:2101–2104

    Article  PubMed  Google Scholar 

  • White D, Cribb BW, Heard TA (2001) Flower constancy of the stingless bee Trigona carbonaria Smith (Hymenoptera: Apidae: Meliponini). J Aust Ent Soc 40:61–64. doi:10.1046/j.1440-6055.2001.00201.x

    Article  Google Scholar 

Download references

Acknowledgments

We thank school of Biological Sciences at Monash University for providing the CT lab to conduct our experiments. We thank Dr Tim Heard for supplying native stingless bee hives and his keen advice on bee kee**, and Dr Mani Shrestha for discussions. This research was supported under Australian Research Council’s Discovery Projects funding scheme (project numbers DP130100015, DP0878968 and DP160100161). AGD thanks the ARC for a QEII fellowship to conduct the initial phases of the research, and the Alexander von Humboldt Foundation for facilitating collaborative exchanges.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian G. Dyer.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All experiments were conducted in compliance with Australian laws for ethical research.

Additional information

A. G. Dyer and M. Streinzer contributed equally, listed alphabetically.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00359-016-1114-z.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 203 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyer, A.G., Streinzer, M. & Garcia, J. Flower detection and acuity of the Australian native stingless bee Tetragonula carbonaria Sm.. J Comp Physiol A 202, 629–639 (2016). https://doi.org/10.1007/s00359-016-1107-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-016-1107-y

Keywords

Navigation