Log in

Causal associations of immune cells with benign prostatic hyperplasia: insights from a Mendelian randomization study

  • Original Article
  • Published:
World Journal of Urology Aims and scope Submit manuscript

A Letter to the Editor to this article was published on 29 May 2024

Abstract

Background

Previous research has focused on the association between immune cells and the development of benign prostatic hyperplasia (BPH). Nevertheless, the causal relationships in this context remain uncertain.

Methods

This study employed a comprehensive and systematic two-sample Mendelian randomization (MR) analysis to determine the causal relationships between immunophenotypes and BPH. We examined the causal associations between 731 immunophenotypes and the risk of BPH by utilizing publicly available genetic data. Integrated sensitivity analyses were performed to validate the robustness, assess heterogeneity, and examine horizontal pleiotropy in the results.

Results

We discovered that 38 immunophenotypes have a causal effect on BPH. Subsequently, four of these immunophenotypes underwent verification using weighted median, weighted mode, and inverse variance weighted (IVW) algorithms, which included CD19 on CD24+ CD27+, CD19 on naive-mature B cell, HLA DR on CD14 CD16+ and HLA DR+ T cell%lymphocyte. Furthermore, BPH exhibited a significant association with three immunophenotypes: CD19 on IgD+ CD38dim (β = −0.152, 95% CI = 0.746–0.989, P = 0.034), CD19 on IgD+ (β = −0.167, 95% CI = 0.737–0.973, P = 0.019), and CD19 on naive-mature B cell (β = −0.166, 95% CI = 0.737–0.972, P = 0.018).

Conclusions

Our study provides valuable insights for future clinical investigations by establishing a significant association between immune cells and BPH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data and material are availability. The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Wu L, Li BH, Wang YY, Wang CY, Zi H, Weng H, Huang Q, Zhu YJ, Zeng XT (2019) Periodontal disease and risk of benign prostate hyperplasia: a cross-sectional study. Mil Med Res 6(1):34

    PubMed  PubMed Central  Google Scholar 

  2. Yang L, Liu Z, Peng Z, Song P, Zhou J, Wang L, Chen J, Dong Q (2021) Exposure to Di-2-ethylhexyl phthalate and benign prostatic hyperplasia, NHANES 2001–2008. Front Endocrinol (Lausanne) 12:804457

    Article  PubMed  Google Scholar 

  3. Gheinani AH, Kock I, Vasquez E, Baumgartner U, Bigger-Allen A, Sack BS, Burkhard FC, Adam RM, Monastyrskaya K (2018) Concordant miRNA and mRNA expression profiles in humans and mice with bladder outlet obstruction. Am J Clin Exp Urol 6(6):219–233

    PubMed  PubMed Central  Google Scholar 

  4. Raafat M, Kamel AA, Shehata AH, Ahmed AF, Bayoumi AMA, Moussa RA, Abourehab MAS, El-Daly M (2022) Aescin protects against experimental benign prostatic hyperplasia and preserves prostate histomorphology in rats via suppression of inflammatory cytokines and COX-2. Pharmaceuticals (Basel) 15(2):130

    Article  CAS  PubMed  Google Scholar 

  5. Jang YJ, Jung HY, Myeong JY, Song KH, Kwon J, Kim D, Park JI (2023) Effects of alginate oligosaccharide on testosterone-induced benign prostatic hyperplasia in orchiectomized rats. Nutrients 15(3):682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Robert G, Descazeaud A, Nicolaiew N, Terry S, Sirab N, Vacherot F, Maille P, Allory Y, de la Taille A (2009) Inflammation in benign prostatic hyperplasia: a 282 patients’ immunohistochemical analysis. Prostate 69(16):1774–1780

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ruth KS, Day FR, Tyrrell J, Thompson DJ, Wood AR, Mahajan A, Beaumont RN, Wittemans L, Martin S, Busch AS et al (2020) Using human genetics to understand the disease impacts of testosterone in men and women. Nat Med 26(2):252–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Borges MC, Oliveira IO, Freitas DF, Horta BL, Ong KK, Gigante DP, Barros AJD (2017) Obesity-induced hypoadiponectinaemia: the opposite influences of central and peripheral fat compartments. Int J Epidemiol 46(6):2044–2055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kurki MI, Karjalainen J, Palta P, Sipila TP, Kristiansson K, Donner KM, Reeve MP, Laivuori H, Aavikko M, Kaunisto MA et al (2023) FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613(7944):508–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang C, Zhu D, Zhang D, Zuo X, Yao L, Liu T, Ge X, He C, Zhou Y, Shen Z (2023) Causal role of immune cells in schizophrenia: Mendelian randomization (MR) study. BMC Psychiatry 23(1):590

    Article  PubMed  PubMed Central  Google Scholar 

  11. Orru V, Steri M, Sidore C, Marongiu M, Serra V, Olla S, Sole G, Lai S, Dei M, Mulas A et al (2020) Complex genetic signatures in immune cells underlie autoimmunity and inform therapy. Nat Genet 52(10):1036–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ (2015) Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4:7

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, Laurin C, Burgess S, Bowden J, Langdon R et al (2018) The MR-Base platform supports systematic causal inference across the human phenome. Elife 7:e34408

    Article  PubMed  PubMed Central  Google Scholar 

  14. Iwata Y, Matsushita T, Horikawa M, Dilillo DJ, Yanaba K, Venturi GM, Szabolcs PM, Bernstein SH, Magro CM, Williams AD et al (2011) Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood 117(2):530–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu H, Su Z, Barnie PA (2020) The role of B regulatory (B10) cells in inflammatory disorders and their potential as therapeutic targets. Int Immunopharmacol 78:106111

    Article  CAS  PubMed  Google Scholar 

  16. Yoo KH, Kim SK, Chung JH, Chang SG (2011) Association of IL10, IL10RA, and IL10RB polymorphisms with benign prostate hyperplasia in Korean population. J Korean Med Sci 26(5):659–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, Leenen PJ, Liu YJ, MacPherson G, Randolph GJ et al (2010) Nomenclature of monocytes and dendritic cells in blood. Blood 116(16):e74–e80

    Article  CAS  PubMed  Google Scholar 

  18. Kruslin B, Tomas D, Dzombeta T, Milkovic-Perisa M, Ulamec M (2017) Inflammation in prostatic hyperplasia and carcinoma-basic scientific approach. Front Oncol 7:77

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tsuboi I, Harada T, Hirabayashi Y, Aizawa S (2019) Senescence-accelerated mice (SAMP1/TA-1) treated repeatedly with lipopolysaccharide develop a condition that resembles hemophagocytic lymphohistiocytosis. Haematologica 104(10):1995–2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Olingy CE, San Emeterio CL, Ogle ME, Krieger JR, Bruce AC, Pfau DD, Jordan BT, Peirce SM, Botchwey EA (2017) Non-classical monocytes are biased progenitors of wound healing macrophages during soft tissue injury. Sci Rep 7(1):447

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fichtner M, Dreyling M, Binder M, Trepel M (2017) The role of B cell antigen receptors in mantle cell lymphoma. J Hematol Oncol 10(1):164

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yanaba K, Kamata M, Asano Y, Tada Y, Sugaya M, Kadono T, Tedder TF, Sato S (2013) CD19 expression in B cells regulates atopic dermatitis in a mouse model. Am J Pathol 182(6):2214–2222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xu Q, Yan X, Han Z, ** X, ** Y, Sun H, Liang J, Zhang S (2022) Immune cell infiltration and relevant gene signatures in the tumor microenvironment that significantly associates with the prognosis of patients with breast cancer. Front Mol Biosci 9:823911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Patton DT, Wilson MD, Rowan WC, Soond DR, Okkenhaug K (2011) The PI3K p110delta regulates expression of CD38 on regulatory T cells. PLoS ONE 6(3):e17359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hladikova K, Koucky V, Boucek J, Laco J, Grega M, Hodek M, Zabrodsky M, Vosmik M, Rozkosova K, Vosmikova H et al (2019) Tumor-infiltrating B cells affect the progression of oropharyngeal squamous cell carcinoma via cell-to-cell interactions with CD8+ T cells. J Immunother Cancer 7(1):261

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (Grant No. 81870516).

Author information

Authors and Affiliations

Authors

Contributions

TL and YZ designed and completed original manuscript writing; ZZ, YZ and XS implemented data analysis and literature collection; XZ reviewed the manuscript; YR and ZW supervised and funded this work. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhong Wan or Yuan Ruan.

Ethics declarations

Competing interests

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethics approval and consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Zhang, Y., Zhou, Z. et al. Causal associations of immune cells with benign prostatic hyperplasia: insights from a Mendelian randomization study. World J Urol 42, 216 (2024). https://doi.org/10.1007/s00345-024-04913-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00345-024-04913-6

Keywords

Navigation