Log in

Interaction of Mineral Nutrients and Plant Growth-Promoting Microbes for Biofortification of Different Crop** Systems

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Micronutrient deficiency poses a significant and challenging threat to over one-third of the global population. To deal with this issue, nutrient management via biofortification is considered one of the effective and sustainable approaches. Biofortification involves multifaceted strategies such as agronomic practices—mineral and microbial interventions, conventional plant breeding, molecular and genetic engineering techniques. All these strategies fortify crops with essential elements like pro-vitamin A, vitamin C, iron, zinc, calcium, iodine, and selenium while reducing anti-nutritional factors and trypsin inhibitors in staple foods. However, most of these techniques are considered expensive and require more time than routine practices. Therefore, this review focused on the interaction among soil–plant-nutrient and their management through the introduction of plant growth-promoting bacteria, fungi, and endophytes. The aim was to enrich our understanding of how these interventions facilitate nutrient acquisition, translocation, and uptake within both plant shoots and grains. We emphasize on the use of beneficial microbes in biofortification of staple crops for sustaining human nutritional requirement. Microbes-mediated biofortification exhibits tremendous potential in enhancing the bioavailability of nutrients in staple crops, providing solution to widespread micronutrient deficiencies and nutritional security. Diversification of crop biofortification in different crop** systems is the demand of the hour to mitigate the challenges of hidden hunger. Understanding and harnessing this synergistic relationship can offer promising avenues for sustainable agriculture, addressing nutritional deficiencies, improving crop resilience, and ensuring food security in different cro** systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not Applicable.

References

  • Abdelmoteleb A, Gonzalez-Mendoza D (2020) Isolation and identification of phosphate solubilizing Bacillus spp. from Tamarix ramosissima Rhizosphere and their effect on growth of Phaseolus vulgaris under salinity stress. Geomicrobiol J 37(10):901–908

    Article  CAS  Google Scholar 

  • Aguirre PF, Giacomini SJ et al (2020) Biological nitrogen fixation and urea-N recovery in “Coastcross-1” pasture treated with Azospirillum brasilense. Pesquisa Agropec Brasil 55:e01242

    Article  Google Scholar 

  • Ahmad M, Adil Z, Hussain A et al (2019) Potential of phosphate solubilizing Bacillus strains for improving growth and nutrient uptake in mungbean and maize crops. Pak J Agric Sci 56:283–289

    Google Scholar 

  • Alami NH (2017) Effect of yeast based biofertilizer combined with bacteria on mustard plant growth. Int J Appl Biol 1:46–57

    Article  Google Scholar 

  • Andrade LF, de Souza GL et al (2014) Analysis of the abilities of endophytic bacteria associated with banana tree roots to promote plant growth. J Microbiol 52(1):27–34

    Article  CAS  PubMed  Google Scholar 

  • Antunes JEL, De Freitas ADS et al (2019) Sugarcane inoculated with endophytic diazotrophic bacteria: effects on yield, biological nitrogen fixation and industrial characteristics. Acad Bras Cienc 91:1–12

    Google Scholar 

  • Babalola OO, Glick BR (2012) The use of microbial inoculants in African agriculture: current practice and future prospects. J Food Agric Environ 10:540–549

    Google Scholar 

  • Bargaz A, Lyamlouli K, Chtouki M et al (2018) Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Front Microbiol l 9:1606

    Article  Google Scholar 

  • Baslam M, Garmendia I, Goicoechea N (2011) Arbuscular mycorrhizal fungi (AMF) improved growth and nutritional quality of greenhouse-grown lettuce. J Agric Food Chem 59(10):5504–5515

    Article  CAS  PubMed  Google Scholar 

  • Bauer JT, Kleczewski NM, Bever JD et al (2012) Nitrogen-fixing bacteria, arbuscular mycorrhizal fungi, and the productivity and structure of prairie grassland communities. Oecologia 170:1089–1098

    Article  PubMed  Google Scholar 

  • Bechtaoui N, Raklami A, Tahiri AI et al (2019) Characterization of plant growth promoting rhizobacteria and their benefits on growth and phosphate nutrition of faba bean and wheat. Biol Open 19(7):bio043968

    Article  Google Scholar 

  • Bidondo LF, Silvani V et al (2011) Pre-symbiotic and symbiotic interactions between Glomus intraradices and two Paenibacillus species isolated from AM propagules. In vitro and in vivo assays with soybean (AG043RG) as plant host. Soil Biol Biochem 43:1866–1872

    Article  CAS  Google Scholar 

  • Bloch SE, Clark R, Gottlieb SS et al (2020) Biological nitrogen fixation in maize: optimizing nitrogenase expression in a root-associated diazotroph. J Exp Bot 71:4591–4603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogati K, Walczak M (2022) The impact of drought stress on soil microbial community, enzyme activities and plants. Agronomy 12(1):189

    Article  CAS  Google Scholar 

  • Bona E, Lingua G, Manassero P et al (2015) AM fungi and PGP pseudomonads increase flowering, fruit production, and vitamin content in strawberry grown at low nitrogen and phosphorus levels. Mycorrhiza 25(3):181–193

    Article  CAS  PubMed  Google Scholar 

  • Bononi L, Chiaramonte JB et al (2020) Phosphorus-solubilizing Trichoderma spp. from Amazon soils improve soybean plant growth. Sci Rep 10:2858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouis HE, Saltzman A (2017) Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Glob Food Sec 12:49–58

    Article  PubMed  PubMed Central  Google Scholar 

  • Budke C, Dierend W, Schön HG et al (2021) Iodine biofortification of apples and pears in an orchard using foliar sprays of different composition. Front Plant Sci 12:162

    Article  Google Scholar 

  • Cakmak I, Marzorati M, Van den Abbeele P et al (2020) Fate and bioaccessibility of iodine in food prepared from agronomically biofortified wheat and rice and impact of cofertilization with zinc and selenium. J Agric Food Chem 68:1525–1535

    Article  CAS  PubMed  Google Scholar 

  • Candan N, Cakmak I, Ozturk L (2018) Zinc-biofortified seeds improved seedling growth under zinc deficiency and drought stress in durum wheat. J Plant Nutrit Soil Sci 181(3):388–395

    Article  CAS  Google Scholar 

  • Carneiro B, Cardoso P, Figueira E, Lopes I, Venâncio C (2023) Forward-looking on new microbial consortia: combination of rot fungi and rhizobacteria on plant growth-promoting abilities. Appl Soil Ecol 182:104689

    Article  Google Scholar 

  • Cassán F, Maiale S, Masciarelli O et al (2009) Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation. Eur J Soil Biol 45:12–19

    Article  Google Scholar 

  • Chagas LFB, Chagas Junior AF et al (2015) Evaluation of the phosphate solubilization potential of Trichoderma strains (Trichoplus JCO) and effects on rice biomass. J Soil Sci Plant Nutr 15:794–804

    Google Scholar 

  • Chagas LFB, Chagas Junior AF, Castro HG (2017) Phosphate solubilization capacity and indole acetic acid production by Trichoderma strains for biomass increase on basil and mint plants. Braz J Agric 92:176

    Google Scholar 

  • Chen Q, Liu S (2019) Identification and characterization of the phosphate-solubilizing bacterium Pantoea sp. S32 in reclamation soil in Shanxi, China. Front Microbiol 10:1–12

    Article  Google Scholar 

  • Chen D, Saeed M, Ali MNHA, Raheel M, Ashraf W, Hassan Z, Hassan MZ, Farooq U, Hakim MF, Rao MJ, Naqvi SAH (2023) Plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi combined application reveals enhanced soil fertility and rice production. Agronomy 13(2):550

    Article  CAS  Google Scholar 

  • Chewapanich W, Charoenrak P, Intanoo W, Chamswarng C (2021) Efficacy of Trichoderma asperellum CB-Pin-01 and potassium dihydrogen phosphate to enhance growth and yield and reduce Pythium root rot of hydroponically grown lettuce. Agric Nat Resour 55:601–610

    Google Scholar 

  • Chilimba AD, Young SD, Joy EJ (2014) Agronomic biofortification of maize, soybean and groundnut with selenium in intercrop** and sole crop** systems. Afr J Agric Res 9(50):3620–3626

    Google Scholar 

  • Chouyia FE, Romano I, Fechtali T et al (2020) P-solubilizing Streptomyces roseocinereus ms1b15 with multiple plant growth-promoting traits enhance barley development and regulate rhizosphere microbial population. Front Plant Sci 11:1–10

    Article  Google Scholar 

  • Ciampitti IA, Reis AFB et al (2021) Revisiting biological nitrogen fixation dynamics in soybeans. Front Plant Sci 12:1–11

    Article  Google Scholar 

  • Coelho RC, Barsotti RCF, Maltez HF et al (2021) Expanding information on the bioaccessibility and bioavailability of iron and zinc in biofortified cowpea seeds. Food Chem 347:129027

    Article  CAS  PubMed  Google Scholar 

  • Cohen A, Bottini R, Piccoli P (2008) Azospirillum brasilense Sp 245 produces ABA in chemically defined culture medium and increases ABA content in Arabidopsis plants. Plant Growth Regulat 54:97–103

    Article  CAS  Google Scholar 

  • Consentino BB, Aprile S, Rouphael Y, Ntatsi G et al (2022) Application of PGPB combined with variable N doses affects growth, yield-related traits, N-fertilizer efficiency and nutritional status of lettuce grown under controlled condition. Agronomy 12:236

    Article  CAS  Google Scholar 

  • Cruz SP, Basso KC (2021) Response of jiggs grass to inoculation with plant growth-promoting microrganisms. Sci Agrar Parana 2020:395–402

    Google Scholar 

  • Dai H, Wei S, Twardowska I (2020) Biofortification of soybean (Glycine max L.) with Se and Zn, and enhancing its physiological functions by spiking these elements to soil during flowering phase. Sci Total Environ 740:139648

    Article  CAS  PubMed  Google Scholar 

  • Daly DH, Velivelli SLS, Prestwich BD (2017) The role of soil microbes in crop biofortification. In: Meena VS, Mishra PK, Bisht JK, Pattanayak A (eds) Agriculturally important microbes for sustainable agriculture. Springer, Singapore, pp 333–356

    Chapter  Google Scholar 

  • Dhaliwal SS, Sharma V, Shukla AK et al (2021) Comparative efficiency of mineral, chelated and nano forms of zinc and iron for improvement of zinc and iron in Chickpea (Cicer arietinum L.) through biofortification. Agronomy 11:2436. https://doi.org/10.3390/agronomy11122436

    Article  CAS  Google Scholar 

  • Dhiman K, Sharma D, Kumari R, Tomar P (2023) Biofortification of crops using microbes—a promising sustainable agriculture strategy. J Plant Nutr 46(12):2912–2935. https://doi.org/10.1080/01904167.2022.2160755

    Article  CAS  Google Scholar 

  • Ditta A, Ullah N, Imtiaz M, Li X et al (2022) Zn biofortification in crops through Zn-solubilizing plant growth-promoting rhizobacteria. In: Mahmood Q (ed) Sustainable plant nutrition under contaminated environments. Springer, Cham, pp 115–133

    Chapter  Google Scholar 

  • Doley K, Terkar A, Borde M (2020) Applications of microorganisms in agriculture. In: Arora PK (ed) Microbial technology for health and environment, microorganisms for sustainability. Springer, Singapore, pp 229–248

    Chapter  Google Scholar 

  • Dotaniya ML, Meena VD (2015) Rhizosphere effect on nutrient availability in soil and its uptake by plants: a review. Proc Natl Acad Sci India Sec B Biol Sci 85(1):1–12. https://doi.org/10.1007/s40011-013-0297-0

    Article  CAS  Google Scholar 

  • Elkoca E, Kantar F, Sahin F (2008) Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth, and yield of chickpea. J Plant Nutr 31:157–171

    Article  CAS  Google Scholar 

  • Emmett BD, Youngblut ND et al (2017) Plant phylogeny and life history shape rhizosphere bacterial microbiome of summer annuals in an agricultural field. Front Microbiol 8:2414

    Article  PubMed  PubMed Central  Google Scholar 

  • Estes AM, Hearn DJ, Agrawal S, Pierson EA, Dunning Hotopp JC (2018) Comparative genomics of the Erwinia and Enterobacter olive fly endosymbionts. Sci Rep 8(1):15936

    Article  PubMed  PubMed Central  Google Scholar 

  • Fageria NK, Moreira A (2011) The role of mineral nutrition on root growth of crop plants. Advan Agron 110:251–331

    Article  CAS  Google Scholar 

  • Fibach-Paldi S, Burdman S, Okon Y (2012) Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense. FEMS Microbiol Lett 326:99–108

    Article  CAS  PubMed  Google Scholar 

  • Fukami J, Cerezini P, Hungria M (2018) Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express 8:1–12

    Article  CAS  Google Scholar 

  • Galindo FS, Teixeira Filho MCM, Buzetti S et al (2016) Corn yield and foliar diagnosis affected by nitrogen fertilization and inoculation with Azospirillum brasilense. Brazilian J Soil Sci 40:1–18

    Google Scholar 

  • Galindo FS, Teixeira Filho MCM, Buzetti S et al (2019) Maize yield response to nitrogen rates and sources associated with Azospirillum brasilense. Agronomy J 111:1985–1997

    Article  CAS  Google Scholar 

  • Galindo FS, Buzetti S, Rodrigues WL et al (2020) Inoculation of Azospirillum brasilense associated with silicon as a liming source to improve nitrogen fertilization in wheat crops. Sci Rep 10:6160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galindo FS, da Silva EC, Pagliari PH et al (2021) Nitrogen recovery from fertilizer and use efficiency response to Bradyrhizobium sp. and Azospirillum brasilense combined with N rates in cowpea-wheat crop sequence. Appl Soil Ecol 157:103764

    Article  Google Scholar 

  • Galinha C, Sánchez-Martínez M, Pacheco AMG et al (2014) Characterization of selenium-enriched wheat by agronomic biofortification. J Food Scie Technol 52(7):4236–4245. https://doi.org/10.1007/s13197-014-1503-7

    Article  CAS  Google Scholar 

  • Gaucin-Delgado JM, Hernandez-Montiel LG, Sanchez-Chavez E, Ortega-Ortiz H, Fortis-Hernandez M, Reyes-PéRez JJ, Preciado-Rangel P (2020) Agronomic biofortification with selenium improves the yield and nutraceutical quality in tomato under soilless conditions. Not Bot Horti Agrobo 48(3):1221–1232

    Article  CAS  Google Scholar 

  • Glahn RP, Noh H (2021) Redefining bean iron biofortification: a review of the evidence for moving to a high Fe bioavailability approach. Front Sustain Food Syst 5:682130

    Article  Google Scholar 

  • Gonçalves ASF, Pinho RG, Guilherme LRG et al (2019) Foliar feeding with zinc as a biofortification strategy in maize. Rev Bras Milho Sorgo 18(2):281–289

    Article  Google Scholar 

  • Gopalakrishnan S, Vadlamudi S, Samineni S et al (2016) Plant growth-promotion and biofortification of chickpea and pigeonpea through inoculation of biocontrol potential bacteria, isolated from organic soils. Springerplus 5(1):1–11

    Article  Google Scholar 

  • Guimarães VF, Klein J, Klein DK (2021) Growth promotion and phosphate solubilization in soybean crop: seed coinoculation with Bradyrhizobium japonicum and Pseudomonas fluorescens. Res Soc Dev 10(11):e366101120078

    Article  Google Scholar 

  • Gumiere T, Rousseau AN, Costa DP, Cassetari A et al (2019) Phosphorus source driving the soil microbial interactions and improving sugarcane development. Sci Rep 9:4400

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta VSR, Zhang B, Penton CR et al (2019) Diazotroph diversity and nitrogen fixation in summer active perennial grasses in a mediterranean region agricultural soil. Front Mol Biosci 6:1–20

    Article  Google Scholar 

  • Hacquard S, Garrido-Oter R, Gonzalez A et al (2015) Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe 17:603–616

    Article  CAS  PubMed  Google Scholar 

  • Hafeez FY, Abaid-Ullah M, Hassan MN (2013) Plant growth-promoting rhizobacteria as zinc mobilizers: a promising approach for cereals biofortification. In: Maheshwari DK, Saraf M, Aeron A (eds) Bacteria in agrobiology: crop productivity. Springer, Berlin, pp 217–235

    Chapter  Google Scholar 

  • Hakim S, Naqqash T, Nawaz MS et al (2021) Rhizosphere engineering with plant growth-promoting microorganisms for agriculture and ecological sustainability. Front Sustain Food Syst 5:16

    Article  Google Scholar 

  • Hamidov A, Helming K, Bellocchi G, Bojar W, Dalgaard T, Ghaley BB, Hoffmann C, Holman I, Holzkämper A, Krzeminska D, Kværnø SH (2018) Impacts of climate change adaptation options on soil functions: a review of European case-studies. Land Degrad Dev 29(8):2378–2389

    Article  PubMed  PubMed Central  Google Scholar 

  • Hart M, Ehret DL, Krumbein A, Leung C et al (2015) Inoculation with arbuscular mycorrhizal fungi improves the nutritional value of tomatoes. Mycorrhiza 25(5):359–376

    Article  CAS  PubMed  Google Scholar 

  • Hartman K, van der Heijden MGA et al (2017) Deciphering composition and function of the root microbiome of a legume plant. Microbiome 5:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Bhuyan MHMB, Raza A et al (2020) Selenium in plants: Boon or bane? Environ Exp Bot 178:104170

    Article  CAS  Google Scholar 

  • Hassan W, David J, Bashir F (2014) ACC-deaminase and/or nitrogen-fixing rhizobacteria and growth response of tomato (Lycopersicon pimpinellfolium mill). J Plant Interact 9:869–882

    Article  CAS  Google Scholar 

  • Havlin JL (2020) Soil: fertility and nutrient management. Landscape and land capacity. CRC Press, London, pp 251–265

    Chapter  Google Scholar 

  • Hoe KT, Sarmidi MR, Alwee S et al (2020) Oil palm and banana root colonization potential of locally isolated nitrogen-fixing and phosphate-solubilizing bacteria. E3S Web Conf. https://doi.org/10.1051/e3sconf/202020201006

    Article  Google Scholar 

  • Hussain A, Zahir ZA, Asghar HN, Ahmad M, Jamil M, Naveed M et al (2018) Zinc solubilizing bacteria for zinc biofortification in cereals: a step toward sustainable nutritional security. In: Meena VS (ed) Role of rhizospheric microbes in soil. Springer, Singapore, pp 203–227

    Chapter  Google Scholar 

  • Ibáñez A, Diez-Galán A, Cobos R, Calvo-Peña C, Barreiro C, Medina-Turienzo J et al (2021) Using rhizosphere phosphate solubilizing bacteria to improve barley (Hordeum vulgare) plant productivity. Microorganisms 9(8):1619

    Article  PubMed  PubMed Central  Google Scholar 

  • Istina IN, Widiastuti H, Joy B, Antralina M (2015) Phosphate-solubilizing microbe from Saprists peat soil and their potency to enhance oil palm growth and P uptake. Proc Food Sci 3:426–435

    Article  Google Scholar 

  • Jalal A, Shah S, Teixeira Filho MCM et al (2020a) Agro-biofortification of zinc and iron in wheat grains. Gesunde Pflanzen 72(3):227–236

    Article  CAS  Google Scholar 

  • Jalal A, Shah S, Teixeira Filho MCM et al (2020b) Yield and phenological indices of wheat as affected by exogenous fertilization of Zinc and Iron. Braz J Agric Sci 15(1):1–8

    Google Scholar 

  • Jalal A, Galindo FS, Boleta EHM et al (2021) Common bean yield and zinc use efficiency in association with diazotrophic bacteria co-inoculations. Agronomy 11(5):959

    Article  CAS  Google Scholar 

  • Jalal A, da Silva Oliveira CE et al (2022a) Agronomic biofortification and productivity of wheat with soil zinc and diazotrophic bacteria in tropical savannah. Crop Pasture Sci 73:817–830

    Article  CAS  Google Scholar 

  • Jalal A, Galindo FS et al (2022b) Yield, zinc efficiencies and biofortification of wheat with zinc sulfate application in soil and foliar nanozinc fertilisation. Crop Pasture Sci 73:749–759

    Article  CAS  Google Scholar 

  • Jalal A, da Silva Oliveira CE et al (2022c) Diazotrophic bacteria is an alternative strategy for increasing grain biofortification, yield and zinc use efficiency of maize. Plants 11(9):1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jalal A, Mortinho ES, da Silva Oliveira CE, Fernandes GC, Junior EF, de Lima BH, Moreira A, Nogueira TAR, Galindo FS, Filho MCMT (2023) Nano-zinc and plant growth-promoting bacteria is a sustainable alternative for improving productivity and agronomic biofortification of common bean. Chem Biol Technol Agric 10(1):77

    Article  CAS  Google Scholar 

  • Jalal A, Júnior EF, Teixeira Filho MCM (2024) Interaction of zinc mineral nutrition and plant growth-promoting bacteria in tropical agricultural systems: a review. Plants 13(5):571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • **al HN, Gopi K, Prittesh P et al (2019) Phytoextraction of iron from contaminated soils by inoculation of iron-tolerant plant growth-promoting bacteria in Brassica juncea L. Czern. Environ Sci Pollut Res 26(32):32815–32823

    Article  CAS  Google Scholar 

  • Joshi D, Negi G, Vaid S, Sharma A (2013) Enhancement of wheat growth and Zn content in grains by zinc solubilizing bacteria. Int J Agric Environ Biotechnol 6(3):363–370

    Article  Google Scholar 

  • Kamran S, Shahid I, Baig DN et al (2017) Contribution of zinc solubilizing bacteria in growth promotion and zinc content of wheat. Front Microbiol 8:2593

    Article  PubMed  PubMed Central  Google Scholar 

  • Kandali GG, Yadav N, Karmakar RM, Tamuly D (2021) Enrichment of maize grains with zinc through agronomic biofortification. J Indian Soc Soil Sci 69(2):195–202

    Article  Google Scholar 

  • Kaur T, Rana KL, Kour D et al (2020) Microbe-mediated biofortification for micronutrients: present status and future challenges. New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 1–17

    Google Scholar 

  • Khatoon Z, Huang S, Rafique M, Fakhar A, Kamran MA, Santoyo G (2020) Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. J Environ Manage 273:111118

    Article  CAS  PubMed  Google Scholar 

  • Khoshru B, Mitra D, Khoshmanzar E et al (2020) Current scenario and future prospects of plant growth-promoting rhizobacteria: an economic valuable resource for the agriculture revival under stressful conditions. J Plant Nutr 43(20):3062–3092

    Article  CAS  Google Scholar 

  • Kiran A, Wakeel A, Mahmood K, Mubaraka R, Haefele SM (2022) Biofortification of staple crops to alleviate human malnutrition: contributions and potential in develo** countries. Agronomy 12(2):452

    Article  CAS  Google Scholar 

  • Kobayashi T, Nozoye T, Nishizawa NK (2019) Iron transport and its regulation in plants. Free Radical Biol Med 133:11–20

    Article  CAS  Google Scholar 

  • Kumar S, Meena RS, Singh RK, Munir TM, Datta R, Danish S et al (2021a) Soil microbial and nutrient dynamics under different sowings environment of Indian mustard (Brassica juncea L.) in rice based crop** system. Sci Rep 11:5289. https://doi.org/10.1038/s41598-021-84742-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar U, Priyanka, Malik, Prexha, Yogita, Malik K (2021b) Fe chelation and zinc solubilization: a promising approach for cereals biofortification. In: Yadav AN (ed) Soil microbiomes for sustainable agriculture sustainable development and biodiversity, vol 27. Springer, Cham

    Google Scholar 

  • Kumawat KC, Singh I, Nagpal S, Sharma P, Gupta RK, Sirari A (2022) Co-inoculation of indigenous Pseudomonas oryzihabitans and Bradyrhizobium sp. modulates the growth, symbiotic efficacy, nutrient acquisition, and grain yield of soybean. Pedosphere 32(3):438–451

    Article  CAS  Google Scholar 

  • Lambrese Y, Guiñez M, Calvente V, Sansone G, Cerutti S, Raba J, Sanz MI (2018) Production of siderophores by the bacterium Kosakonia radicincitans and its application to control of phytopathogenic fungi. Bioresour Technol Rep 3:82–87

    Article  Google Scholar 

  • Li RX, Cai F, Pang G, Shen QR, Li R, Chen W (2015) Solubilisation of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth. PLoS ONE 10(6):e0130081

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Liu X, Hao T, Chen S (2017) Colonization and maize growth promotion induced by phosphate solubilizing bacterial isolates. Int J Mol Sci 18(7):1253

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Ding X, Chen C, Zheng X, Han H, Li C et al (2019) Enrichment of phosphate solubilizing bacteria during late developmental stages of eggplant (Solanum melongena L.). FEMS Microbiol Ecol 95:1–12

    Article  Google Scholar 

  • Li Y, Li Q, Guan G, Chen S (2020) Phosphate solubilizing bacteria stimulate wheat rhizosphere and endosphere biological nitrogen fixation by improving phosphorus content. PeerJ 8:e9062

    Article  PubMed  PubMed Central  Google Scholar 

  • Lingua G, Bona E, Manassero P, Marsano F et al (2013) Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads increases anthocyanin concentration in strawberry fruits (Fragaria xananassa var. Selva) in conditions of reduced fertilization. Int J Mol Sci 14(8):16207–16225

    Article  PubMed  PubMed Central  Google Scholar 

  • Low JW, Mwanga RO, Andrade M, Carey E, Ball AM (2017) Tackling vitamin A deficiency with biofortified sweetpotato in sub-Saharan Africa. Glob Food Sec 14:23–30

    Article  PubMed  PubMed Central  Google Scholar 

  • Marques AC, Lidon FC, Coelho ARF, Pessoa CC, Luís IC, Scotti-Campos P et al (2020) Quantification and tissue localization of selenium in rice (Oryza sativa L, Poaceae) grains: a perspective of agronomic biofortification. Plants 9(12):1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masood S, Zhao XQ, Shen RF (2020) Bacillus pumilus promotes the growth and nitrogen uptake of tomato plants under nitrogen fertilization. Sci Hortic 272:109581

    Article  CAS  Google Scholar 

  • Matos ADM, Gomes ICP, Nietsche S, Xavier AA, Gomes WS, Santos Neto JA et al (2017) Phosphate solubilization by endophytic bacteria isolated from banana trees. Acad Bras Ciênc 89(4):2945–2954

    Article  CAS  Google Scholar 

  • Medina-Lozano I, Díaz A (2022) Applications of genomic tools in plant breeding: crop biofortification. Int J Mol Sci 23:3086. https://doi.org/10.3390/ijms23063086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meza B, Bashan LE, Bashan Y (2015) Involvement of indole-3-acetic acid produced by Azospirillum brasilense in accumulating intracellular ammonium in Chlorella vulgaris. Res Microbiol 166:72–83

    Article  CAS  PubMed  Google Scholar 

  • Mishra J, Prakash J, Arora NK (2016) Role of beneficial soil microbes in sustainable agriculture and environmental management. Clim Chang Environ Sustain 4(2):137–149

    Article  Google Scholar 

  • Mohamed EAH, Farag AG, Youssef SA (2018) Phosphate solubilization by Bacillus subtilis and Serratia marcescens isolated from tomato plant rhizosphere. J Environ Prot 09:266–277

    Article  CAS  Google Scholar 

  • Mumtaz MZ, Ahmad M, Jamil M, Hussain T (2017) Zinc solubilizing Bacillus spp. potential candidates for biofortification in maize. Microbiol Res 202:51–60

    Article  CAS  PubMed  Google Scholar 

  • Munir I, Bano A, Faisal M (2019) Impact of phosphate solubilizing bacteria on wheat (Triticum aestivum) in the presence of pesticides. Braz J Biol 79:29–37

    Article  CAS  PubMed  Google Scholar 

  • Naqqash T, Imran A, Hameed S, Shahid M, Majeed A, Iqal J et al (2020) First report of diazotrophic Brevundimonas spp. as growth enhancer and root colonizer of potato. Sci Rep 10:12893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ngigi PB, Lachat C, Masinde PW, Du Laing G (2019) Agronomic biofortification of maize and beans in Kenya through selenium fertilization. Environ Geochem Health 41(6):2577–2591

    Article  CAS  PubMed  Google Scholar 

  • Nissar R, Zahida R, Kanth RH, Manzoor G, Shafeeq R, Ashaq H et al (2019) Agronomic biofortification of major cereals with zinc and iron-a review. Agric Rev 40(1):10

    Google Scholar 

  • Noulas C, Tziouvalekas M, Karyotis T (2018) Zinc in soils, water and food crops. J Trace Elem Med Biol 49:252–260

    Article  CAS  PubMed  Google Scholar 

  • Ojok J, Omara P, Opolot E, Odongo W, Olum S, Gijs DL et al (2019) Iodine agronomic biofortification of cabbage (Brassica oleracea var. capitata) and Cowpea (Vigna unguiculata L.) is effective under farmer field conditions. Agronomy 9(12):797

    Article  CAS  Google Scholar 

  • Oldroyd GE, Leyser O (2020) A plant’s diet, surviving in a variable nutrient environment. Sci 368(6486):eaba0196

    Article  CAS  Google Scholar 

  • Oliveira VCD, Faquin V, Guimarães KC, Andrade FR, Pereira J, Guilherme LRG (2018) Agronomic biofortification of carrot with selenium. Ciênc Agrotecnol 42:138–147

    Article  Google Scholar 

  • Oliveira WS, Stamford NP, Silva EVN, Arnaud TS, Izquierdo CG, Hernández T (2021) Microbial fertilizer from PK rocks on lettuce nutrients and soil attributes in consecutive crops. Pesq Agrop Bras 56:e01371

    Article  Google Scholar 

  • Oliver R, Silva MA (2018) Interaction between diazotrophic bacteria and N-fertilizer doses on sugarcane crop. J Plant Nutr 41:722–736

    Article  CAS  Google Scholar 

  • Osorio NW, Habte M (2013) Synergistic effect of a phosphate-solubilizing fungus and an arbuscular mycorrhizal fungus on leucaena seedlings in an Oxisol fertilized with rock phosphate. Botany 91(4):274–281

    Article  CAS  Google Scholar 

  • Oteino N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ et al (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:745

    Article  PubMed  PubMed Central  Google Scholar 

  • Padda KP, Puri A, Chanway C (2019) Endophytic nitrogen fixation—a possible ‘hidden’ source of nitrogen for lodgepole pine trees growing at unreclaimed gravel mining sites. FEMS Microbiol Ecol 95(11):172

    Article  Google Scholar 

  • Pande A, Kaushik S, Pandey P, Negi A (2020) Isolation, characterization, and identification of phosphate-solubilizing Burkholderia cepacia from the sweet corn cv Golden Bantam rhizosphere soil and effect on growth-promoting activities. Int J Vegetable Sci 26(6):591–607

    Article  Google Scholar 

  • Passos JF, Costa PB, Costa MD, Zaffari GR, Nava G, Boneti JI et al (2014) Cultivable bacteria isolated from apple trees cultivated under different crop systems: diversity and antagonistic activity against Colletotrichum gloeosporioides. Genet Mol Biol 37(3):560–572

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel DH, Naik JH, Amaresan N (2018) Synergistic effect of root-associated bacteria on plant growth and certain physiological parameters of banana plant (Musa acuminata). Arch Agron Soil Sci 64(7):1021–1031

    Article  CAS  Google Scholar 

  • Paula RR, Bouillet J-P, Gonçalvez JLM, Trivelin PCO, Baileiro FC et al (2018) Nitrogen fixation rate of Acacia mangium Wild at mid rotation in Brazil is higher in mixed plantations with Eucalyptus grandis Hill ex Maiden than in monocultures. Ann Sci 75:14

    Article  Google Scholar 

  • Pecoraro L, Wang X, Shah D, Song X, Kumar V, Shakoor A et al (2021) Biosynthesis pathways, transport mechanisms and biotechnological applications of fungal siderophores. J Fungi 8:21

    Article  Google Scholar 

  • Pellegrino E, Bedini S (2014) Enhancing ecosystem services in sustainable agriculture: biofertilization and biofortification of chickpea (Cicer arietinum L.) by arbuscular mycorrhizal fungi. Soil Biol Biochem 68:429–439

    Article  CAS  Google Scholar 

  • Pereira NCM, Galindo FS, Gazola RPD, Dupas E, Rosa PAL, Mortinho ES et al (2020) Corn yield and phosphorus use efficiency response to phosphorus rates associated with plant growth promoting bacteria. Front Environ Sci 8:40

    Article  Google Scholar 

  • Porto DS, Farias ENC, Chaves JS, Souza BF, Medeiros RD, Zilli JÉ et al (2017) Symbiotic effectiveness of Bradyrhizobium ingae in promoting growth of inga edulis mart. Seed Rev Bras Cienc Solo 41:1–15

    Google Scholar 

  • Prabhu N, Borkar S, Garg S (2018) Phosphate solubilization mechanisms in alkaliphilic bacterium Bacillus marisflavi FA7. Curr Sci 114(4):845–853

    Article  CAS  Google Scholar 

  • Praharaj S, Skalicky M, Maitra S, Bhadra P, Shankar T, Brestic M et al (2021) Zinc biofortification in food crops could alleviate the zinc malnutrition in human health. Molecules 26:3509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Shivay YS (2020) Agronomic biofortification of plant foods with minerals, vitamins and metabolites with chemical fertilizers and liming. J Plant Nutr 43(10):1534–1554

    Article  CAS  Google Scholar 

  • Promwee A, Issarakraisila M, Intana W, Chamswarng C, Yenjit P (2014) Phosphate solubilization and growth promotion of rubber tree (Hevea brasiliensis Muell. Arg.) by Trichoderma strains. J Agric Sci 6:8–20

    Google Scholar 

  • Radawiec A, Szulc W, Rutkowska B (2021) Agrotechnical biofortification as a method to increase selenium content in spring wheat. Agronomy 11(3):541. https://doi.org/10.3390/agronomy11030541

    Article  CAS  Google Scholar 

  • Rahim FP, Rocio CG, Adalberto BM, Lidia Rosaura SC, Maginot NH (2020) Agronomic biofortification with selenium in tomato crops (Solanum lycopersicon L. Mill). Agriculture 10(10):486

    Article  CAS  Google Scholar 

  • Ramesh A, Sharma SK, Sharma MP, Yadav N, Joshi OP (2014a) Plant growth-promoting traits in Enterobacter cloacae subsp. dissolvens MDSR9 isolated from soybean rhizosphere and its impact on growth and nutrition of soybean and wheat upon inoculation. Agric Res 3(1):53–66

    Article  CAS  Google Scholar 

  • Ramesh A, Sharma SK, Sharma MP, Yadav N, Joshi OP (2014b) Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in Vertisols of central India. Appl Soil Ecol 73:87–96

    Article  Google Scholar 

  • Rana A, Joshi M, Prasanna R, Shivay YS, Nain L (2012) Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur J Soil Biol 50:118–126

    Article  CAS  Google Scholar 

  • Rehman A, Farooq M, Naveed M, Ozturk L, Nawaz A (2018a) Pseudomonas-aided zinc application improves the productivity and biofortification of bread wheat. Crop Pasture Sci 69(7):659. https://doi.org/10.1071/cp17441

    Article  CAS  Google Scholar 

  • Rehman A, Farooq M, Naveed M, Nawaz A, Shahzad B (2018b) Seed priming of Zn with endophytic bacteria improves the productivity and grain biofortification of bread wheat. Eur J Agron 94:98–107

    Article  CAS  Google Scholar 

  • Rehman HF, Ashraf A, Muzammil S, Siddique MH, Ali T (2022) Assessment of zinc solubilization potential of zinc-resistant Pseudomonas oleovorans strain ZSB13 isolated from contaminated soil. Brazilian J Biol 83:1–7

    Google Scholar 

  • Reis VM, Jesus EC, Schwab S, Oliveira ALM, Olivares FL, Baldani VLD et al (2018) Fixação biológica de nitrogênio simbiótica e associativa. In: Fernandes MS, Souza SR, Santos LA (eds) Nutrição Mineral de plantas, 2nd edn. Sociedade Brasileira de Ciência do Solo, Viçosa, pp 280–307

    Google Scholar 

  • Reis HPG, de Queiroz Barcelos JP, Silva VM, Santos EF, Tavanti RFR, Putti FF et al (2020) Agronomic biofortification with selenium impacts storage proteins in grains of upland rice. J Sci Food Agric 100:1990–1997

    Article  CAS  PubMed  Google Scholar 

  • Rezende CC, Nascente AS, Silva MA, de Mello Frasca LL et al (2021) Physiological and agronomic performance of common bean treated with multifunctional microorganisms. Rev Bras Cienc Agrar 16:1–9

    Google Scholar 

  • Rfaki A, Zennouhi O, Nassiri L, Ibijbijen J (2018) Soil properties related to the occurrence of rock phosphate-solubilizing bacteria in the rhizosphere soil of faba bean (Vicia faba l.) in Morocco. Soil Syst 2:1–11

    Article  Google Scholar 

  • Rilling JI, Acuña JJ, Sadowsky MJ, Jorquera MA (2018) Putative nitrogen-fixing bacteria associated with the rhizosphere and root endosphere of wheat plants grown in an andisol from southern Chile. Front Microbiol 9:1–13

    Article  Google Scholar 

  • Rosa PAL, Mortinho ES, Jalal A, Galindo FS, Buzetti S, Fernandes GC et al (2020) Inoculation with growth-promoting bacteria associated with the reduction of phosphate fertilization in sugarcane. Front Environ Sci 8:32

    Article  Google Scholar 

  • Rosa PAL, Galindo FS, Jalal OCES et al (2022) Inoculation with plant growth-promoting bacteria to reduce phosphate fertilization requirement and enhance technological quality and yield of sugarcane. Microorganisms 10:192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rugheim AME, Abdelgani ME (2012) Effects of microbial and chemical fertilization on yield and seed quality of faba bean (Vicia faba). Int Food Res J 19:417–422

    CAS  Google Scholar 

  • Sampaio FAR, Teixeira Filho MCM et al (2021) Nitrogen supply associated with rhizobacteria in the first productive cycle of Marandu grass. J Crop Sci Biotechnol 24:429–439

    Article  CAS  Google Scholar 

  • Santos CLR, Alves GC, Macedo AVM, Giori FG, Pereira W, Urquiaga S et al (2017) Contribution of a mixed inoculant containing strains of Burkholderia spp. and Herbaspirillum ssp. to the growth of three sorghum genotypes under increased nitrogen fertilization levels. Appl Soil Ecol 113:96–106

    Article  Google Scholar 

  • Santos CSA, Guimarães SL, Bonfim-Silva EM, Souza ACP, Koetz M, Campos DTS et al (2021) Effects of associative diazotrophic bacteria on Marandu palisade grass growth development. Arch Zootec 70:80–86

    Google Scholar 

  • Sathya A, Vijayabharathi R, Srinivas V, Gopalakrishnan S (2016) Plant growth-promoting actinobacteria on chickpea seed mineral density: An upcoming complementary tool for sustainable biofortification strategy. 3 Biotech 6:138

    Article  PubMed  PubMed Central  Google Scholar 

  • Schut AGT, Reymann W (2023) Towards a better understanding of soil nutrient dynamics and P and K uptake. Plant Soil 492:687–707. https://doi.org/10.1007/s11104-023-06209-x

    Article  CAS  Google Scholar 

  • Sebring RL, Duiker SW, Berghage RD, Regan JM, Lambert JD, Bryant RB (2022) Gluconacetobacter diazotrophicus inoculation of two lettuce cultivars affects leaf and root growth under hydroponic conditions. Appl Sci 12:10

    Article  Google Scholar 

  • Seshachala U, Tallapragada P (2012) Phosphate solubilizers from the rhizosphere of Piper nigrum L. in Karnataka. India Chil J Agric Res 72:397–403

    Article  Google Scholar 

  • Shahane AA, Shivay YS (2022) Agronomic biofortification of crops: current research status and future needs. Indian J Fertil 18(2):164–179

    Google Scholar 

  • Shaikh S, Saraf M (2017) Biofortification of Triticum aestivum through the inoculation of zinc solubilizing plant growth promoting rhizobacteria in field experiment. Biocatal Agric Biotechnol 9:120–126

    Article  Google Scholar 

  • Shakeel M, Rais A, Hassan MN, Hafeez FY (2015) Root associated Bacillus sp. improves growth, yield and zinc translocation for basmati rice (Oryza sativa) varieties. Front Microbiol 6:1286

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2:587–600

    Article  PubMed  PubMed Central  Google Scholar 

  • Silitonga N, Sembiring M, Marbun M, Rosneli P (2019) Application of phosphate solubilizing fungi and various sources of P-fertilizers toward P-available and P nutrient content of soybean (Glycine max L. Merrill) in andisol soil. IOP Conf Ser Earth Environ Sci 260:10

    Article  Google Scholar 

  • Silva M, Paula T, Moreira BC, Carolino M, Cruz C, Bazzolli DM et al (2014) Nitrogen-fixing bacteria in Eucalyptus globulus plantations. PLoS ONE 9(10):e111313

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva ER, Zoz J, Oliveira CES, Zuffo AM, Steiner F, Zoz T et al (2019a) Can co-inoculation of Bradyrhizobium and Azospirillum alleviate adverse effects of drought stress on soybean (Glycine max L Merrill.)? Arch Microbiol 201:325–335

    Article  CAS  PubMed  Google Scholar 

  • Silva VM, Boleta EHM, Martins JT, dos Santos FLM et al (2019b) Agronomic biofortification of cowpea with selenium: effects of selenate and selenite applications on selenium and phytate concentrations in seeds. J Sci Food Agric 99:5969–5983

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Rajawat MVS, Kaushik R, Prasanna R, Saxena AK (2017) Beneficial role of endophytes in biofortification of Zn in wheat genotypes varying in nutrient use efficiency grown in soils sufficient and deficient in Zn. Plant Soil 416(1):107–116

    Article  CAS  Google Scholar 

  • Singh B, Boukhris I, Kumar V, Yadav AN, Farhat-Khemakhem A, Kumar A et al (2020a) Contribution of microbial phytases to the improvement of plant growth and nutrition: a review. Pedosphere 30(3):295–313

    Article  CAS  Google Scholar 

  • Singh D, Prasanna R, Sharma V, Rajawat MVS, Nishanth S, Saxena AK (2020b) Prospecting plant–microbe interactions for enhancing nutrient availability and grain biofortification. Wheat and barley grain biofortification. Woodhead Publishing, pp 203–228

    Chapter  Google Scholar 

  • Sirohi G, Upadhyay A, Srivastava PS, Srivastava S (2015) PGPR mediated Zinc biofertilization of soil and its impact on growth and productivity of wheat. J Soil Sci Plant Nutr 15(1):202–216

    Google Scholar 

  • Song C, Wang W, Gan Y, Wang L, Chang X, Wang Y, Yang W (2022) Growth promotion ability of phosphate-solubilizing bacteria from the soybean rhizosphere under maize–soybean intercrop** systems. J Sci Food Agric 102(4):1430–1442

    Article  CAS  PubMed  Google Scholar 

  • Souchie EL, Saggin OJ, Silva EMR, Campello EFC, Azcón R, Barea JM (2006) Communities of P-solubilizing bacteria, fungi and arbuscular mycorrhizal fungi in grass pasture and secondary forest of paraty, RJ, Brazil. Acad Bras Cienc 78:183–193

    Article  CAS  Google Scholar 

  • Sousa WS, Campos TS, Souza AGV, Cintra PHN, Faria LO, Santos TEB (2021) Performance of lettuce submitted to the rock dust remineralizer and doses of efficient microorganisms. Rev Agric Neotrop 8(2):e5526

    Article  Google Scholar 

  • Srinivasan R, Yandigeri MS, Kashyap S, Alagawadi AR (2012) Effect of salt on survival and P-solubilization potential of phosphate solubilizing microorganisms from salt affected soils. Saudi J Biol Sci 19:427–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steiner F, Oliveira CES, Zoz T, Zuffo AM, Freitas RS (2020) Co-inoculation of common bean with rhizobium and Azospirillum enhance the drought tolerance. Russ J Plant Physiol 67:923–932

    Article  CAS  Google Scholar 

  • Stephen J, Shabanamol S, Rishad KS, Jisha MS (2015) Growth enhancement of rice (Oryza sativa) by phosphate solubilizing Gluconacetobacter sp (MTCC 8368) and Burkholderia sp (MTCC 8369) under greenhouse conditions. Biotech 5(5):831–837

    Google Scholar 

  • Straeten DVD, Bhullar NK, Steur HD, Gruissem W, MacKenzie D, Pfeiffer W et al (2020) Multiplying the efficiency and impact of biofortification through metabolic engineering. Nat Commun 11:5203. https://doi.org/10.1038/s41467-020-19020-4

    Article  CAS  PubMed  Google Scholar 

  • Subramanian KS, Balakrishnan N, Senthil N (2013) Mycorrhizal symbiosis to increase the grain micronutrient content in maize. Aus J Crop Sci 7(7):900

    CAS  Google Scholar 

  • Suleman M, Yasmin S, Rasul M, Yahya M, Atta BM, Mirza MS (2018) Phosphate solubilizing bacteria with glucose dehydrogenase gene for phosphorus uptake and beneficial effects on wheat. PLoS ONE 13(9):e0204408

    Article  PubMed  PubMed Central  Google Scholar 

  • Ta**i F, Trabelsi M, Drevon JJ (2012) Combined inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases phosphorus use efficiency for symbiotic nitrogen fixation in common bean (Phaseolus vulgaris L.). Saudi J Biol Sci 19:157–163

    Article  CAS  PubMed  Google Scholar 

  • Teixeira Filho MCM, Galindo FS (2019) Inoculação de bactérias com foco na fixação biológica de nitrogênio e promoção de crescimento vegetal. In: Severiano EC, Moraes MF, Paula AM (eds) Tópicos em ciência do solo, vol X, ed.1, editora. Sociedade Brasileira de Ciência do Solo.

  • Ullah A, Farooq M, Rehman A, Hussain M, Siddique KH (2020) Zinc nutrition in chickpea (Cicer arietinum): a review. Crop Pasture Sci 71(3):199–218

    Article  Google Scholar 

  • Vacheron J, Renoud S, Muller D, Babalola OO, Prigent-Combaret C (2015) Alleviation of abiotic and biotic stresses in plants by Azospirillum. In: Cassan FD, Okon Y, Creus C (eds) Handbook for Azospirillum: technical issues and protocols. Springer, Berlin, pp 333–365

    Chapter  Google Scholar 

  • Van Deynze A, Zamora P, Delaux PM, Heitmann C, Jayaraman D, Rajasekar S et al (2018) Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota. PLoS Biol 16(8):e2006352

    Article  PubMed  PubMed Central  Google Scholar 

  • Velázquez MS, Cabello MN, Elíades LA, Russo ML, Allegrucci N, Schalamuk S (2017) Combination of phosphorus solubilizing and mobilizing fungi with phosphate rocks and volcanic materials to promote plant growth of lettuce (Lactuca sativa L.). Rev Argent Microbiol 49(4):347–355

    PubMed  Google Scholar 

  • Wang Y, Yang X, Zhang X, Dong L, Zhang J, Wei Y, Feng Y, Lu L (2014) Improved plant growth and Zn accumulation in grains of rice (Oryza sativa L.) by inoculation of endophytic microbes isolated from a Zn Hyperaccumulator, Sedum alfredii H. J Agric Food Chem 62(8):1783–1791

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang H, Yin T, Xu S, Zhao W, Wang J, Huang Z (2017a) The persistence and performance of phosphate-solubilizing Gluconacetobacter liquefaciens qzr14 in a cucumber soil. 3 Biotech 7(5):294

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Li J, Yang F et al (2017b) Application of bioorganic fertilizer significantly increased apple yields and shaped bacterial community structure in orchard soil. Microb Ecol 73:404–416

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Sarpong CK, Song C, Zhang X, Gan Y, Wang X et al (2020) Screening, identification and growth promotion ability of phosphate solubilizing bacteria from soybean rhizosphere under maize-soybean intercrop** systems. bioRxiv. https://doi.org/10.1101/2020.12.15.422997v1.full

    Article  PubMed  PubMed Central  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Synergistic effects of the inoculation with nitrogen-fixing and phosphate-solubilizing rhizobacteria on the performance of field-grown chickpea. J Plant Nutr Soil Sci 170:283–287

    Article  CAS  Google Scholar 

  • World Bank (2017) An overview of links between obesity and food systems. http://documents.worldbank.org/curated/en/222101499437276873/pdf/117200-REVISED-WP-Obesity-Overview-Web-PUBLIC-002.pdf. Accessed 22 Mar 2022

  • Wu J, Zeng H, Zhao F, Chen C, Liu W, Yang B, Zhang W (2020) Recognizing the role of plant species composition in the modification of soil nutrients and water in rubber agroforestry systems. Sci Total Environ 723:138042

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Kumar V et al (2018) Microbiome in crops: diversity, distribution, and potential role in crop improvement. Crop improvement through microbial biotechnology. Elsevier, Amsterdam, pp 305–332

    Google Scholar 

  • Yadav AN, Kour D, Kaur T et al (2021) Biodiversity, and biotechnological contribution of beneficial soil microbiomes for nutrient cycling, plant growth improvement and nutrient uptake. Biocat Agric Biotechn 33:102009

    Article  CAS  Google Scholar 

  • Yahaghi Z, Shirvani M et al (2019) Uptake and effects of lead and zinc on alfalfa (Medicago sativa L.) seed germination and seedling growth: role of plant growth promoting bacteria. South Afr J Bot 124:573–582

    Article  CAS  Google Scholar 

  • Yaseen MK, Hussain S (2021) Zinc-biofortified wheat required only a medium rate of soil zinc application to attain the targets of zinc biofortification. Arch Agron Soil Sci 67(4):551–562

    Article  CAS  Google Scholar 

  • Yasmin R, Hussain S, Rasool MH, Siddique MH, Muzammil S (2021) Isolation, characterization of Zn solubilizing bacterium (Pseudomonas protegens RY2) and its contribution in growth of chickpea (Cicer arietinum L) as deciphered by improved growth parameters and Zn content. Dose-Response 19(3):15593258211036792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaballa JI, Golluscio R, Ribaudo CM (2020) Effect of the phosphorus-solubilizing bacterium Enterobacter ludwigii on barley growth promotion. Am Sci Res J Eng Technol 63:144–157

    Google Scholar 

  • Zhang J, Wang P, **ao Q (2021) Transcriptome profiling of gene expression in phosphate-solubilizing bacterium Acinetobacter sp. strain m01 interacting with melon (Cucumis melo L.) seedling. J Plant Interact 16:385–397

    Article  CAS  Google Scholar 

  • Zhao L, Zhang YQ (2015) Effects of phosphate solubilization and phytohormone production of Trichoderma asperellum Q1 on promoting cucumber growth under salt stress. J Integr Agric 14:1588–1597

    Article  CAS  Google Scholar 

  • Zhu F, Qu L, Hong X, Sun X (2011) Isolation and characterization of a phosphate solubilizing halophilic bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the coast of yellow-sea of China. Evid Based Complement Alternat Med 61:5032

    Google Scholar 

  • Zoffoli BC, Brito LF, Straliotto R, Araújo AP (2021) Early nitrogen supplementation stimulates the nodulation and growth of common bean plants inoculated with rhizobium. Acta Scientiarum Agron 43(1):e55105

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank São Paulo State University (UNESP) for providing the technology and support as well as CNPq for the financial support.

Funding

This review received funding from The World Academy of Science (TWAS) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), for the first author’s doctoral fellowship (CNPq/TWAS grant number: 166331/2018-0), and the productivity research grant (award number 311308/2020-1) of the corresponding author.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, AJ and MCMTF, Figures and Tables, AJ; BI; CEdaSO; IMBG and BHdeL, writing—original draft preparation, AJ; CEdaSO; ACB; VdeAM, writing—review and editing, AJ and MCMTF, visualization, AJ; Finalizing and structuring, AJ; MCMTF, funding acquisition, AJ and MCMTF. All authors have read and agreed to the published version of the manuscript”.

Corresponding author

Correspondence to Marcelo Carvalho Minhoto Teixeira Filho.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Handling Editor: Axel Mithöfer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalal, A., Oliveira, C.E., Gato, I.M.B. et al. Interaction of Mineral Nutrients and Plant Growth-Promoting Microbes for Biofortification of Different Crop** Systems. J Plant Growth Regul (2024). https://doi.org/10.1007/s00344-024-11380-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00344-024-11380-1

Keywords

Navigation