Log in

Global air-sea CO2 exchange flux since 1980s: results from CMIP6 Earth System Models

  • Chemistry
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The ocean could profoundly modulate the ever-increasing atmospheric CO2 by air-sea CO2 exchange process, which is also able to cause significant changes of physical and biogeochemical properties in return. In this study, we assessed the long-term average and spatial-temporal variability of global air-sea CO2 exchange flux (FCO2) since 1980s basing on the results of 18 Coupled Model Intercomparison Project Phase 6 (CMIP6) Earth System Models (ESMs). Our findings indicate that the CMIP6 ESMs simulated global CO2 sink in recent three decades ranges from 1.80 to 2.24 Pg C/a, which is coincidence with the results of cotemporaneous observations. What’s more, the CMIP6 ESMs consistently show that the global oceanic CO2 sink has gradually intensified since 1980s as well as the observations. This study confirms the simulated FCO2 could reach agreements with the observations in the aspect of primary climatological characteristics, however, the simulation skills of CIMP6 ESMs in diverse open-sea biomes are unevenness. None of the 18 CMIP6 ESMs could reproduce the observed FCO2 increasement in the central-eastern tropical Pacific and the midlatitude Southern Ocean. Deficiencies of some CMIP6 ESMs in reproducing the atmospheric pressure systems of the Southern Hemisphere and the El Niño-Southern Oscillation (ENSO) mode of the tropical Pacific are probably the major causes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability and Statement

All data analyzed in this study are publicly available. Outputs from the nine Earth System Models from the CMIP6 were downloaded from the archive at https://esgf-node.llnl.gov/projects/cmip6/.

References

  • Anav A, Friedlingstein P, Kidston M, Bopp L, Ciais P, Cox P, Jones C, Jung M, Myneni R, Zhu Z. 2013. Evaluating the land and ocean components of the global carbon cycle in the CMIP5 earth system models. Journal of Climate, 26(18): 6801–6843, https://doi.org/10.1175/JCLI-D-12-00417.1.

    Article  Google Scholar 

  • Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quéré C, Myneni R B, Piao S, Thornton P. 2013. Carbon and other biogeochemical cycles. In: Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, **a Y, Bex V, Midgley P M eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, MA, USA. p.465–570.

    Google Scholar 

  • Doney S C, Tilbrook B, Roy S, Metzl N, Le Quéré C, Hood M, Feely R A, Bakker D. 2009. Surface-ocean CO2 variability and vulnerability. Deep Sea Research Part II: Topical Studies in Oceanography, 56(8–10): 504–511, https://doi.org/10.1016/j.dsr2.2008.12.016.

    Article  Google Scholar 

  • Dong F, Li Y C, Wang B, Huang W Y, Shi Y Y, Dong W H. 2016. Global air-sea CO2 flux in 22 CMIP5 models: multiyear mean and interannual variability. Journal of Climate, 29(7): 2407–2431, https://doi.org/10.1175/JCLI-D-14-00788.1.

    Article  Google Scholar 

  • Dong F, Li Y C, Wang B, Huang W Y, Shi Y Y, Dong W H. 2017. Assessment of responses of tropical Pacific air-sea CO2 flux to ENSO in 14 CMIP5 Models. Journal of Climate, 30(21): 8595–8613, https://doi.org/10.1175/JCLI-D-16-0543.1.

    Article  Google Scholar 

  • Eyring V, Bony S, Meehl G A, Senior C A, Stevens B, Stouffer R J, Taylor K E. 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5): 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016.

    Article  Google Scholar 

  • Fay A R, McKinley G A. 2014. Global open-ocean biomes: mean and temporal variability. Earth System Science Data, 6(2): 273–284.

    Article  Google Scholar 

  • Feely R A, Boutin J, Cosca C E, Dandonneau Y, Etcheto J, Inoue H Y, Ishii M, Le Quéré C, Mackey D J, McPhaden M, Metzl N, Poisson A, Wanninkhof R. 2002. Seasonal and interannual variability of CO2 in the equatorial Pacific. Deep Sea Research Part IT. Topical Studies in Oceanography, 49(13–14): 2443–2469, https://doi.org/10.1016/S0967-0645(02)00044-9.

    Article  Google Scholar 

  • Feely R A, Wanninkhof R, Takahashi T, Tans P. 1999. Influence of El Niño on the equatorial Pacific contribution to atmospheric CO2 accumulation. Nature, 398(6728): 597–601, https://doi.org/10.1038/19273.

    Article  Google Scholar 

  • Fletcher S E M, Gruber N, Jacobson A R, Doney S C, Dutkiewicz S, Gerber M, Follows M, Joos F, Lindsay K, Menemenlis D, Mouchet A, Müller S A, Sarmiento J L. 2006. Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean. Global Biogeochemical Cycles, 20(2): GB2002, https://doi.org/10.1029/2005GB002530.

    Google Scholar 

  • Frölicher T L, Sarmiento J L, Paynter D J, Dunne J P, Krasting J P, Winton M. 2015. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 Models. Journal of Climate, 28(2): 862–886, https://doi.org/10.1175/JCLI-D-14-00117.1.

    Article  Google Scholar 

  • Gruber N, Landschützer P, Lovenduski N S. 2019. The Variable Southern Ocean Carbon Sink. Annual Review of Marine Science, 11: 159–186.

    Article  Google Scholar 

  • ** C X, Zhou T J, Chen X L. 2019. Can CMIP5 earth system models reproduce the interannual variability of air-sea CO2 fluxes over the Tropical Pacific Ocean?. Journal of Climate, 32(8): 2261–2275, https://doi.org/10.1175/JCLI-D-18-0131.1.

    Article  Google Scholar 

  • Jones C D, Collins M, Cox P M, Spall S A. 2001. The carbon cycle response to ENSO: a coupled climate-carbon cycle model study. Journal of Climate, 14(21): 4113–4129, https://doi.org/10.1175/1520-0442(2001)014<4113:TCCRTE>2.0.CO;2.

    Article  Google Scholar 

  • Key R M, Kozyr A, Sabine C L, Lee K, Wanninkhof R, Bullister J L, Feely R A, Millero F J, Mordy C, Peng T H. 2004. A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Global Biogeochemical Cycles, 18(4): GB4031, https://doi.org/10.1029/2004GB002247.

    Article  Google Scholar 

  • Landschützer P, Gruber N, Bakker D C E, Schuster U. 2014. Recent variability of the global ocean carbon sink. Global Biogeochemical Cycles, 28(9): 927–949, https://doi.org/10.1002/2014GB004853.

    Article  Google Scholar 

  • Landschützer P, Gruber N, Bakker D C E. 2016. Decadal variations and trends of the global ocean carbon sink. Global Biogeochemical Cycles, 30(10): 1396–1417, https://doi.org/10.1002/2015GB005359.

    Article  Google Scholar 

  • Landschützer P, Gruber N, Bakker D C E. 2017. An observation-based global monthly gridded sea surface pCO2 product from 1982 onward and its monthly climatology (NCEI Accession 0160558). Version 4.4. NOAA National Centers for Environmental Information. Dataset. https://doi.org/10.7289/V5Z899N6. Accessed on 2019-03-27.

  • Landschützer P, Gruber N, Haumann F A, Rödenbeck C, Bakker D C E, van Heuven S, Hoppema M, Metzl N, Sweeney C, Takahashi T, Tilbrook B, Wanninkhof R. 2015. The reinvigoration of the Southern Ocean carbon sink. Science, 349(6253): 1221–1224, https://doi.org/10.1126/science.aab2620.

    Article  Google Scholar 

  • Le Quéré C, Orr J C, Monfray P, Aumont O, Madec G. 2000. Interannual variability of the oceanic sink of CO2 from 1979 through 1997. Global Biogeochemical Cycles, 14(4): 1247–1265, https://doi.org/10.1029/1999GB900049.

    Article  Google Scholar 

  • Lenton A, Matear R J. 2007. Role of the Southern Annular Mode (SAM) in Southern Ocean CO2 uptake. Global Biogeochemical Cycles, 21(2): GB2016, https://doi.org/10.1029/2006GB002714.

    Article  Google Scholar 

  • Li Y C, Xu Y F. 2012. Influences of two air-sea exchange schemes on the distribution and storage of bomb radiocarbon in the Pacific Ocean. Marine Chemistry, 130–131: 4048, https://doi.org/10.1016/J.MARCHEM.2011.12.006.

    Google Scholar 

  • Li Y C, Xu Y F. 2013. Interannual variations of the air-sea carbon dioxide exchange in the different regions of the Pacific Ocean. Acta Oceanologica Sinica, 32(3): 71–79, https://doi.org/10.1007/s13131-013-0291-7.

    Article  Google Scholar 

  • Luo X F, Wei H, Liu Z, Zhao L. 2015. Seasonal variability of air-sea CO2 fluxes in the Yellow and East China Seas: a case study of continental shelf sea carbon cycle model. Continental Shelf Research, 107: 69–78, https://doi.org/10.1016/j.csr.2015.07.009.

    Article  Google Scholar 

  • McKinley G A, Rödenbeck C, Gloor M, Houweling S, Heimann M. 2004. Pacific dominance to global air-sea CO2 flux variability: a novel atmospheric inversion agrees with ocean models. Geophysical Research Letters, 31(22): L22308, https://doi.org/10.1029/2004GL021069.

    Article  Google Scholar 

  • Mongwe N P, Vichi M, Monteiro P M S. 2018. The seasonal cycle of pCO2 and CO2 fluxes in the Southern Ocean: diagnosing anomalies in CMIP5 Earth system models. Biogeosciences, 15(9): 2851–2872, https://doi.org/10.5194/bg-15-2851-2018.

    Article  Google Scholar 

  • Resplandy L, Séférian R, Bopp L. 2015. Natural variability of CO2 and O2 fluxes: what can we learn from centuries-long climate models simulations?. Journal of Geophysical Research Oceans, 120(1): 384–404, https://doi.org/10.1002/2014JC010463.

    Article  Google Scholar 

  • Rödenbeck C, Bakker D C E, Gruber N, Iida Y, Jacobson A R, Jones S, Landschützer P, Metzl N, Nakaoka S, Olsen A Park G H, Peylin P, Rodgers K B, Sasse T P, Schuster U, Shutler J D, Valsala V, Wanninkhof R, Zeng J. 2015. Data, based estimates of the ocean carbon sink variability-first results of the Surface Ocean pCO2 Map** intercomparison (SOCOM). Biogeosciences, 12(23): 7251–7278, https://doi.org/10.5194/bg-12-7251-2015.

    Article  Google Scholar 

  • Rödenbeck C, Bakker D C E, Metzl N, Olsen A, Sabine C, Cassar N, Reum F, Keeling R F, Heimann M. 2014. Interannual sea-air CO2 flux variability from an observation-driven ocean mixed-layer scheme. Biogeosciences, 11(17): 4599–4613, https://doi.org/10.5194/bg-11-4599-2014.

    Article  Google Scholar 

  • Sweeney C, Gloor E, Jacobson A R, Key R M, McKinley G, Sarmiento J L, Wanninkhof R. 2007. Constraining global air-sea gas exchange for CO2 with recent bomb 14C measurements. Global Biogeochemical Cycles, 21(2): GB2015, https://doi.org/10.1029/2006GB002784.

    Article  Google Scholar 

  • Takahashi T, Sutherland S C, Sweeney C, Poisson A, Metzl N, Tilbrook B, Bates N, Wanninkhof R, Feely R A, Sabine C, Olafsson J, Nojiri Y. 2002. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep Sea Research Part II: Topical Studies in Oceanography, 49(9–10): 1601–1622, https://doi.org/10.1016/S0967-0645(02)00003-6.

    Article  Google Scholar 

  • Takahashi T, Sutherland S C, Wanninkhof R, Sweeney C, Feely R A, Chipman D W, Hales B, Friederich G, Chavez F, Sabine C, Watson A, Bakker D C E, Schuster U, Metzl N, Yoshikawa-Inoue H, Ishii M, Midorikawa T, Nojiri Y, Körtzinger A, Steinhoff T, Hoppema M, Olafsson J, Arnarson T S, Tilbrook B, Johannessen T, Olsen A, Bellerby R, Wong C S, Delille B, Bates N R, de Baar H J W. 2009. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep Sea Research Part II: Topical Studies in Oceanography, 56(8–10): 554–577, https://doi.org/10.1016/j.dsr2.2008.12.009.

    Article  Google Scholar 

  • Taylor K E. 2001. Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research Atmospheres, 106(D7): 7183–7192, https://doi.org/10.1029/2000JD900719.

    Article  Google Scholar 

  • Valsala V, Maksyutov S. 2010. Simulation and assimilation of global ocean pCO2 and air-sea CO2 fluxes using ship observations of surface ocean pCO2 in a simplified biogeochemical offline model. Tellus B: Chemical and Physical Meteorology, 62(5): 821–840, https://doi.org/10.1111/j.1600-0889.2010.00495.x.

    Article  Google Scholar 

  • Wang X J, Murtugudde R, Hackert E, Wang J, Beauchamp J. 2015. Seasonal to decadal variations of sea surface pCO2 and sea-air CO2 flux in the equatorial oceans over 1984–2013: a basin-scale comparison of the Pacific and Atlantic Oceans. Global Biogeochemical Cycles, 29(5): 597–609, https://doi.org/10.1002/2014GB005031.

    Article  Google Scholar 

  • Zeng J, Nojiri Y, Landschützer P, Telszewski M, Nakaoka S. 2014. A global surface ocean fCO2 climatology based on a Feed-Forward Neural Network. Journal of Atmospheric and Oceanic Technology, 31(8): 1838–1849, https://doi.org/10.1175/JTECH-D-13-00137.1.

    Article  Google Scholar 

Download references

Acknowledgment

We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups listed in Table 1 for producing and making available their model output. We thank the anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ming Song.

Additional information

Supported by the National Natural Science Foundation of China (No. 41806133), the Marine S&T Fund of Shandong Province for the Pilot National Laboratory for Marine Science and Technology (Qingdao) (No. 2022QNLM040003-1), the National Key Research and Development Program of China (No. 2017YFA0603204), and the Fund of Key Laboratory of Global Change and Marine-Atmospheric Chemistry, MNR (No. GCMAC1905)

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, B., Song, J., Li, X. et al. Global air-sea CO2 exchange flux since 1980s: results from CMIP6 Earth System Models. J. Ocean. Limnol. 40, 1417–1436 (2022). https://doi.org/10.1007/s00343-021-1096-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-021-1096-8

Keyword

Navigation